forked from microsoft/Megatron-DeepSpeed
-
Notifications
You must be signed in to change notification settings - Fork 1
/
cleanup_fix_dataset.py
178 lines (139 loc) · 6.51 KB
/
cleanup_fix_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""
Filter and clean documents:
Capable to clean docs with less than 512 characters, less than
256 characters and contains javascript, fix text and dataset specific
cleaning like stories and realnews datasets.
Program arguments have the details.
"""
import argparse
from functools import partial
import glob
import ftfy
import json
from langdetect import detect
import multiprocessing
import os
from pathlib import Path
import re
import time
def process_doc(json_line, args):
# Read the line.
document = json.loads(json_line)
text = document['text']
output = {'remove_512': False, 'remove_256_javascript': False, \
'remove_512_non_english': False, 'ftfy_fix_text': False, \
'general_cleaning': False}
try:
# Reomove all docs with less than 512 characters
if "remove_512" in args.tasks:
if len(text) < 512:
output['remove_512'] = True
return output, text, document, True
# Remove docs if less than 256 character length and contains Javascript
if "remove_256_javascript" in args.tasks:
if len(text) < 256 and 'javascript' in text.lower():
output['remove_256_javascript'] = True
return output, text, document, True
# Remove docs < 512 and nonenglish
if "remove_512_non_english" in args.tasks:
if len(text) < 512 and detect(text) != 'en':
output['remove_512_non_english'] = True
return output, text, document, True
# Fix the text using ftfy, don't remove the text, hence return False
if "ftfy_fix_text" in args.tasks:
fixed_text = ftfy.fix_text(text)
output['ftfy_fix_text'] = True
return output, fixed_text, document, False
# Cleaning extra spaces and newlines
if "general_cleaning" in args.tasks:
cleaned_text = re.sub(r" +|\b\n+ |\b\n+", " ", text)
#cleaned_text = re.sub(r"\n\n+", "\n\n", text) # used this for Gutenberg dataset
#cleaned_text = re.sub(r"\n", "\n\n", text) # Used this for realnews
# stories datasets
#cleaned_text = re.sub(r" \'", "'", text)
#cleaned_text = re.sub(r" \!", "!", cleaned_text)
#cleaned_text = re.sub(r" \.", ".", cleaned_text)
#cleaned_text = re.sub(r" \?", "?", cleaned_text)
#cleaned_text = re.sub(r" - ", "-", cleaned_text)
##cleaned_text = re.sub(r"\" ", "\"", cleaned_text)
#cleaned_text = re.sub(r" @ ", "@", cleaned_text)
output['general_cleaning'] = True
return output, cleaned_text, document, False
except Exception as e:
print('Error: *************************\n{}\ntext: {}'.format(e, \
text), flush=True)
return output, text, document, True
# don't remove
return output, text, document, False
def process_set(args, input_file, output_f_cleaned, output_f_filtered):
print(' > working on {} ...'.format(input_file), flush=True)
num_docs = num_remove_512 = num_remove_java = num_remove_512_non_english \
= num_ftfy_fix_text = num_general_cleaning = 0
# Output file and counters.
output_cleaned = open(output_f_cleaned, 'wb')
output_filtered = open(output_f_filtered, 'wb')
start_time = time.time()
# Setup multi-processing.
num_workers = 40
fin = open(input_file, 'r', encoding='utf-8')
pool = multiprocessing.Pool(num_workers)
process_doc_partial = partial(process_doc, args=args)
processed_docs = pool.imap(process_doc_partial, fin, 500)
# Process documents.
for output, text, document, to_filter in processed_docs:
num_docs += 1
num_remove_512 += 1 if output['remove_512'] else 0
num_remove_java += 1 if output['remove_256_javascript'] else 0
num_remove_512_non_english += 1 if output['remove_512_non_english'] \
else 0
num_ftfy_fix_text += 1 if output['ftfy_fix_text'] else 0
num_general_cleaning += 1 if output['general_cleaning'] else 0
document['text'] = text
myjson = json.dumps(document, ensure_ascii=False)
if to_filter:
output_filtered.write(myjson.encode('utf-8'))
output_filtered.write('\n'.encode('utf-8'))
else:
output_cleaned.write(myjson.encode('utf-8'))
output_cleaned.write('\n'.encode('utf-8'))
if num_docs % args.log_interval == 0:
print(' processed {:9d} documents in {:.2f} seconds ...'.format(
num_docs, time.time() - start_time), flush=True)
# Close the file.
output_cleaned.close()
output_filtered.close()
fin.close()
# Print stats.
print(' >> total docs: {} remove_512 {} remove_256_javascript {} '\
'remove_512_non_english {} ftfy_fix_text {} general_cleaning {}'.\
format(num_docs, num_remove_512, num_remove_java,\
num_remove_512_non_english, num_ftfy_fix_text, \
num_general_cleaning), flush=True)
if __name__ == '__main__':
print('parsing the arguments ...')
parser = argparse.ArgumentParser()
parser.add_argument('--input-files', nargs = '*', required=True, default=\
None, help = 'Input json files that needs to be'\
' cleaned')
parser.add_argument('--tasks', nargs = '*', required=True, default=None,\
help = 'Tasks to perform on the input files, ' \
'such as remove_512, remove_256_javascript, ' \
'remove_512_non_english, ftfy_fix_text, and ' \
'general_cleaning. 256 or 512 means the number' \
' of characters.')
parser.add_argument('--output-path', type=str, default=None,
help='Directory where the output should go')
parser.add_argument('--log-interval', type=int, default=100,
help='Log interval')
args = parser.parse_args()
print('cleanup dataset ...')
for input_file in args.input_files:
input_filename, input_filename_ext = os.path.splitext(Path(input_file)\
.name)
output_f_cleaned = os.path.join(args.output_path, input_filename + \
"_cleaned" + input_filename_ext)
output_f_filtered = os.path.join(args.output_path, input_filename + \
"_filtered" + input_filename_ext)
process_set(args, input_file, output_f_cleaned, output_f_filtered)
print('done :-)', flush=True)