-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
129 lines (108 loc) · 4.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File : models.py
# Author : Bowen Pan
# Email : [email protected]
# Date : 09/18/2018
#
# Distributed under terms of the MIT license.
import torch
from torch import nn
import utils
from collections import OrderedDict
import torch.nn.functional as F
from segmentTool.models import *
import numpy as np
from itertools import combinations
builder = ModelBuilder()
class TransformModule(nn.Module):
def __init__(self, dim=25, num_view=8):
super(TransformModule, self).__init__()
self.num_view = num_view
self.dim = dim
self.mat_list = nn.ModuleList()
for i in range(self.num_view):
fc_transform = nn.Sequential(
nn.Linear(dim * dim, dim * dim),
nn.ReLU(),
nn.Linear(dim * dim, dim * dim),
nn.ReLU()
)
self.mat_list += [fc_transform]
def forward(self, x):
# shape x: B, V, C, H, W
x = x.view(list(x.size()[:3]) + [self.dim * self.dim,])
view_comb = self.mat_list[0](x[:, 0])
for index in range(x.size(1))[1:]:
view_comb += self.mat_list[index](x[:, index])
view_comb = view_comb.view(list(view_comb.size()[:2]) + [self.dim, self.dim])
return view_comb
class SumModule(nn.Module):
def __init__(self):
super(SumModule, self).__init__()
def forward(self, x):
# shape x: B, V, C, H, W
x = torch.sum(x, dim=1, keepdim=False)
return x
class VPNModel(nn.Module):
def __init__(self, config):
super(VPNModel, self).__init__()
self.num_views = config.num_views
self.output_size = config.output_size
self.transform_type = config.transform_type
print('Views number: ' + str(self.num_views))
print('Transform Type: ', self.transform_type)
self.encoder = builder.build_encoder(
arch=config.encoder,
fc_dim=config.fc_dim,
)
if self.transform_type == 'fc':
self.transform_module = TransformModule(dim=self.output_size, num_view=self.num_views)
elif self.transform_type == 'sum':
self.transform_module = SumModule()
self.decoder = builder.build_decoder(
arch=config.decoder,
fc_dim=config.fc_dim,
num_class=config.num_class,
use_softmax=False,
)
def forward(self, x, return_feat=False):
B, N, C, H, W = x.view([-1, self.num_views, int(x.size()[1] / self.num_views)] \
+ list(x.size()[2:])).size()
x = x.view(B*N, C, H, W)
x = self.encoder(x)[0]
x = x.view([B, N] + list(x.size()[1:]))
x = self.transform_module(x)
if return_feat:
x, feat = self.decoder([x], return_feat=return_feat)
else:
x = self.decoder([x])
x = x.transpose(1,2).transpose(2,3).contiguous()
if return_feat:
feat = feat.transpose(1,2).transpose(2,3).contiguous()
return x, feat
return x
class FCDiscriminator(nn.Module):
def __init__(self, num_classes, ndf = 64):
super(FCDiscriminator, self).__init__()
self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(ndf, ndf*2, kernel_size=4, stride=2, padding=1)
self.conv3 = nn.Conv2d(ndf*2, ndf*4, kernel_size=4, stride=2, padding=1)
self.conv4 = nn.Conv2d(ndf*4, ndf*8, kernel_size=4, stride=2, padding=1)
self.classifier = nn.Conv2d(ndf*8, 1, kernel_size=4, stride=2, padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
#self.up_sample = nn.Upsample(scale_factor=32, mode='bilinear')
#self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.conv1(x)
x = self.leaky_relu(x)
x = self.conv2(x)
x = self.leaky_relu(x)
x = self.conv3(x)
x = self.leaky_relu(x)
x = self.conv4(x)
x = self.leaky_relu(x)
x = self.classifier(x)
#x = self.up_sample(x)
#x = self.sigmoid(x)
return x