-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathenvironment.py
329 lines (302 loc) · 14.7 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import tensorflow as tf
import numpy as np
import gym, cv2
import time, os
os.environ['LANG']='en_US' # For Pendulum-v0 UTF-8 error
# from envs.examples import airl_envs
try:
from senseact.envs.ur.reacher_env import ReacherEnv
from senseact.utils import tf_set_seeds, NormalizedEnv
except:
print('No senseact package install')
import random
from gym import spaces
class Environment(object):
def __init__(self, run_dir, env_name, alg='mairlImit', train_mode=False, obs_mode='pixel'):
"""
:param run_dir:
:param env_name:
:param alg: 'mairlImit', 'mairlImit4Transfer', 'mairlTransfer', 'mgail'
:param obs_mode: 'pixel', 'state'
"""
self.run_dir = run_dir
self.name = env_name
self.alg = alg
self.obs_mode = obs_mode
assert self.alg in ['mairlImit', 'mairlImit4Transfer', 'mairlTransfer', 'mgail'], '{} is not Implemented!'.format(self.alg)
self.train_mode = train_mode
if env_name in ['UR5_Reacher']:
rand_state = np.random.RandomState(1).get_state()
env = ReacherEnv(
setup="UR5_6dof",
host="192.168.1.102",
dof=6,
control_type="velocity",
target_type="position",
reset_type="zero",
reward_type="precision",
derivative_type="none",
deriv_action_max=5,
first_deriv_max=2,
accel_max=1.4,
speed_max=0.3,
speedj_a=1.4,
episode_length_time=4.0,
episode_length_step=None,
actuation_sync_period=1,
dt=0.04,
run_mode="multiprocess",
rllab_box=False,
movej_t=2.0,
delay=0.0,
random_state=rand_state
)
self.gym = NormalizedEnv(env)
self.gym.start()
else:
self.gym = gym.make(self.name)
self.random_initialization = True
self._connect()
self._train_params()
self.set_seed()
def _step(self, action):
action = np.squeeze(action)
if action.shape == ():
action = np.expand_dims(action, axis=0)
# or use: action = 【action]
self.t += 1
if isinstance(self.gym.action_space, spaces.Discrete):
action = int(action)
result = self.gym.step(action)
self.state, self.reward, self.done, self.info = result[:4]
if self.obs_mode == 'pixel':
self.state = cv2.resize(self.gym.render('rgb_array'), dsize=(64, 64), interpolation=cv2.INTER_AREA)
if self.random_initialization:
if hasattr(self.gym, 'env') and hasattr(self.gym.env, 'data'):
self.qpos, self.qvel = self.gym.env.data.qpos.flatten(), self.gym.env.data.qvel.flatten()
else:
self.qpos, self.qvel = [], []
return np.float32(self.state), np.float32(self.reward), self.done, np.float32(self.qpos), np.float32(self.qvel)
else:
return np.float32(self.state), np.float32(self.reward), self.done
def step(self, action, mode):
qvel, qpos = [], []
if mode == 'tensorflow':
if self.random_initialization:
state, reward, done, qval, qpos = tf.py_func(self._step, inp=[action], Tout=[tf.float32, tf.float32, tf.bool, tf.float32, tf.float32], name='env_step_func')
else:
state, reward, done = tf.py_func(self._step, inp=[action],
Tout=[tf.float32, tf.float32, tf.bool],
name='env_step_func')
state = tf.reshape(state, shape=self.state_size)
done.set_shape(())
else:
if self.random_initialization:
state, reward, done, qvel, qpos = self._step(action)
else:
state, reward, done = self._step(action)
return state, reward, done, 0., qvel, qpos
def reset(self, qpos=None, qvel=None):
self.t = 0
self.state = self.gym.reset()
if self.obs_mode == 'pixel':
self.state = cv2.resize(self.gym.render('rgb_array'), dsize=(64, 64), interpolation=cv2.INTER_CUBIC)
if self.random_initialization and qpos is not None and qvel is not None and hasattr(self.gym, 'env') and hasattr(self.gym.env, 'set_state'):
self.gym.env.set_state(qpos, qvel)
return np.float32(self.state)
def get_status(self):
return self.done
def get_state(self):
return self.state
def render(self, mode='human'):
img = self.gym.render(mode=mode)
return img
def _connect(self):
if self.obs_mode == 'pixel':
self.state_size = (64, 64, 3)
else:
if isinstance(self.gym.observation_space, spaces.Box):
self.state_size = self.gym.observation_space.shape
else:
self.state_size = (self.gym.observation_space.n,)
if isinstance(self.gym.action_space, spaces.Box):
self.action_size = self.gym.action_space.shape[0]
else:
self.action_size = self.gym.action_space.n
self.action_space = np.asarray([None]*self.action_size)
if hasattr(self.gym, 'env') and hasattr(self.gym.env, 'data'):
self.qpos_size = self.gym.env.data.qpos.shape[0]
self.qvel_size = self.gym.env.data.qvel.shape[0]
else:
self.qpos_size = 0
self.qvel_size = 0
def set_seed(self):
tf.set_random_seed(self.seed)
random.seed(self.seed)
self.gym.seed(self.seed)
np.random.seed(self.seed)
def _train_params(self):
self.seed = 0
if self.name == 'Hopper-v2':
self.expert_data = 'expert_trajectories/hopper_er.bin'
elif self.name in ['Ant-v2', 'CartPole-v0', 'GridWorldGym-v0', 'HalfCheetah-v2', 'Swimmer-v2', 'Pendulum-v0']:
self.expert_data = 'expert_data/{}_expert_{}.bin'.format(self.obs_mode, self.name)
elif self.name == 'PointMazeRight-v0':
self.expert_data = 'expert_data/{}_expert_{}.bin'.format(self.obs_mode, 'PointMazeLeft-v0')
elif self.name == 'DisabledAnt-v0':
self.expert_data = 'expert_data/{}_expert_{}.bin'.format(self.obs_mode, 'CustomAnt-v0')
elif self.name in ['PointMazeLeft-v0', 'CustomAnt-v0']:
self.expert_data = 'packages/gail_expert/{}_expert_{}.bin'.format(self.obs_mode, self.name)
elif self.name in ['UR5_Reacher']:
self.expert_data = 'packages/gail_expert/{}_expert_{}.bin'.format(self.obs_mode, self.name)
else:
raise NotImplementedError('Env {} is not implemented.'.format(self.name))
if not self.train_mode:
self.trained_model = 'snapshots/20200705225434_Ant-v2_train_mairlImit_s_100/2020-07-06-07-20-175000.sn'
# Test episode number: self.n_train_iters / self.test_interval * self.n_episodes_test
self.n_train_iters = 1
self.test_interval = 1
self.n_episodes_test = 10
else:
if self.alg == 'mairlTransfer':
self.trained_model = 'snapshots/20200804190406_PointMazeLeft-v0_train_mairlImit4Transfer_s_10_False_False_False/2020-08-05-11-01-720000.sn'
else:
self.trained_model = None
self.n_train_iters = 1000000
self.test_interval = 1000
self.n_episodes_test = 1
if self.name in ['GridWorldGym-v0']:
self.n_steps_test = self.gym.spec.max_episode_steps # 20
else:
self.n_steps_test = 1000
self.vis_flag = False
self.save_models = True
if self.name in ['GridWorldGym-v0', 'MountainCar-v0', 'CartPole-v0']:
self.continuous_actions = False
else:
self.continuous_actions = True
self.airl_entropy_weight = 1.0
if self.alg in ['mairlImit4Transfer', 'mairlTransfer']:
self.use_airl = True
self.disc_out_dim = 1
self.phi_size = None # [200, 100]
self.forward_model_type = 'gru'
self.state_only = True # False
elif self.alg in ['mairlImit']:
self.use_airl = True
self.disc_out_dim = 1
self.phi_size = None # [200, 100]
self.forward_model_type = 'transformer' # 'transformer' # 'gru'
self.state_only = False
else:
self.use_airl = False
self.disc_out_dim = 2
self.phi_size = None # [200, 100]
self.forward_model_type = 'gru'
self.state_only = False
# Main parameters to play with:
self.er_agent_size = 50000
self.collect_experience_interval = 15
self.n_steps_train = 10
if self.state_only:
if self.name in ['PointMazeLeft-v0', 'CustomAnt-v0']:
self.discr_policy_itrvl = 10
else:
self.discr_policy_itrvl = 100
self.prep_time = 0
self.save_best_ckpt = False
else:
self.discr_policy_itrvl = 100
self.prep_time = 1000
self.save_best_ckpt = True
if self.forward_model_type == 'transformer':
self.use_scale_dot_product = True
self.use_skip_connection = True
self.use_dropout = False
else:
self.use_scale_dot_product = False
self.use_skip_connection = False
self.use_dropout = False
self.gamma = 0.99
self.batch_size = 512 # 70
self.weight_decay = 1e-7
self.policy_al_w = 1e-2
self.policy_tr_w = 1e-4
self.policy_accum_steps = 7
self.total_trans_err_allowed = 1000
self.temp = 1.
self.cost_sensitive_weight = 0.8
self.noise_intensity = 6.
self.do_keep_prob = 0.75
self.forward_model_lambda = 0. # 0.1
# Hidden layers size
self.fm_size = 100
self.d_size = [200, 100]
self.p_size = [100, 50]
self.encoder_feat_size = 1024 # (30,)
# Learning rates
self.fm_lr = 1e-4
self.d_lr = 1e-3
self.p_lr = 1e-4
# Log
self.exp_name = '{}_{}_{}_{}_{}_{}_{}_{}_{}'.format(time.strftime("%Y%m%d%H%M%S", time.localtime()), self.name,
'train' if self.train_mode else 'eval', self.alg,
's' if self.state_only else 'sa', self.discr_policy_itrvl,
self.use_scale_dot_product, self.use_skip_connection, self.use_dropout)
self.config_dir = os.path.join(self.run_dir, 'snapshots', self.exp_name)
self.log_intervel = 100
self.save_video = True
if not os.path.isdir(self.config_dir):
os.makedirs(self.config_dir)
with open(os.path.join(self.config_dir, 'log.txt'), 'a') as f:
f.write("{0}: {1}\n".format('seed', self.seed))
f.write("{0}: {1}\n".format('name', self.name))
f.write("{0}: {1}\n".format('expert_data', self.expert_data))
f.write("{0}: {1}\n".format('train_mode', self.train_mode))
f.write("{0}: {1}\n".format('trained_model', self.trained_model))
f.write("{0}: {1}\n".format('n_train_iters', self.n_train_iters))
f.write("{0}: {1}\n".format('test_interval', self.test_interval))
f.write("{0}: {1}\n".format('n_episodes_test', self.n_episodes_test))
f.write("{0}: {1}\n".format('alg', self.alg))
f.write("{0}: {1}\n".format('n_steps_test', self.n_steps_test))
f.write("{0}: {1}\n".format('vis_flag', self.vis_flag))
f.write("{0}: {1}\n".format('save_models', self.save_models))
f.write("{0}: {1}\n".format('continuous_actions', self.continuous_actions))
f.write("{0}: {1}\n".format('airl_entropy_weight', self.airl_entropy_weight))
f.write("{0}: {1}\n".format('use_airl', self.use_airl))
f.write("{0}: {1}\n".format('disc_out_dim', self.disc_out_dim))
f.write("{0}: {1}\n".format('phi_size', self.phi_size))
f.write("{0}: {1}\n".format('forward_model_type', self.forward_model_type))
f.write("{0}: {1}\n".format('state_only', self.state_only))
f.write("{0}: {1}\n".format('er_agent_size', self.er_agent_size))
f.write("{0}: {1}\n".format('collect_experience_interval', self.collect_experience_interval))
f.write("{0}: {1}\n".format('n_steps_train', self.n_steps_train))
f.write("{0}: {1}\n".format('discr_policy_itrvl', self.discr_policy_itrvl))
f.write("{0}: {1}\n".format('prep_time', self.prep_time))
f.write("{0}: {1}\n".format('gamma', self.gamma))
f.write("{0}: {1}\n".format('batch_size', self.batch_size))
f.write("{0}: {1}\n".format('weight_decay', self.weight_decay))
f.write("{0}: {1}\n".format('policy_al_w', self.policy_al_w))
f.write("{0}: {1}\n".format('policy_tr_w', self.policy_tr_w))
f.write("{0}: {1}\n".format('policy_accum_steps', self.policy_accum_steps))
f.write("{0}: {1}\n".format('total_trans_err_allowed', self.total_trans_err_allowed))
f.write("{0}: {1}\n".format('temp', self.temp))
f.write("{0}: {1}\n".format('cost_sensitive_weight', self.cost_sensitive_weight))
f.write("{0}: {1}\n".format('noise_intensity', self.noise_intensity))
f.write("{0}: {1}\n".format('do_keep_prob', self.do_keep_prob))
f.write("{0}: {1}\n".format('forward_model_lambda', self.forward_model_lambda))
f.write("{0}: {1}\n".format('fm_size', self.fm_size))
f.write("{0}: {1}\n".format('d_size', self.d_size))
f.write("{0}: {1}\n".format('p_size', self.p_size))
f.write("{0}: {1}\n".format('fm_lr', self.fm_lr))
f.write("{0}: {1}\n".format('d_lr', self.d_lr))
f.write("{0}: {1}\n".format('p_lr', self.p_lr))
f.write("{0}: {1}\n".format('exp_name', self.exp_name))
f.write("{0}: {1}\n".format('config_dir', self.config_dir))
f.write("{0}: {1}\n".format('log_intervel', self.log_intervel))
f.write("{0}: {1}\n".format('save_video', self.save_video))
f.write("{0}: {1}\n".format('save_best_ckpt', self.save_best_ckpt))
f.write("{0}: {1}\n".format('obs_mode', self.obs_mode))
f.write("{0}: {1}\n".format('use_scale_dot_product', self.use_scale_dot_product))
f.write("{0}: {1}\n".format('use_skip_connection', self.use_skip_connection))
f.write("{0}: {1}\n".format('use_dropout', self.use_dropout))