-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdriver.py
358 lines (319 loc) · 16.9 KB
/
driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import sys, os, cv2
import time
import numpy as np
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import logging
tf.get_logger().setLevel(logging.ERROR)
import common
from mgail import MGAIL
from tensorboardX import SummaryWriter
import moviepy.editor as mpy
class Driver(object):
def __init__(self, environment):
self.env = environment
self.algorithm = MGAIL(environment=self.env)
self.init_graph = tf.global_variables_initializer()
if self.env.alg == 'mairlTransfer':
variables_to_restore = [var for var in tf.global_variables()
if var.name.startswith('discriminator')]
# print('variables_to_restore: ', variables_to_restore)
self.restore_disc = tf.train.Saver(variables_to_restore)
self.saver = tf.train.Saver(max_to_keep=None)
tf_config = tf.ConfigProto(allow_soft_placement=True)
# Prevent tensorflow from taking all the gpu memory
tf_config.gpu_options.allow_growth = True
self.sess = tf.Session(config=tf_config)
if self.env.trained_model:
if self.env.train_mode and self.env.alg == 'mairlTransfer':
# initialize other parameters
self.sess.run(self.init_graph)
self.restore_disc.restore(self.sess, self.env.trained_model)
print('(mairlTransfer) Restore {} successfully.'.format(self.env.trained_model))
else:
self.saver.restore(self.sess, self.env.trained_model)
print('(Eval) Restore {} successfully.'.format(self.env.trained_model))
else:
self.sess.run(self.init_graph)
self.sess.graph.finalize()
self.run_dir = self.env.run_dir
self.loss = 999. * np.ones(3)
self.reward_mean = 0
self.reward_std = 0
self.run_avg = 0.001
self.discriminator_policy_switch = 0
self.policy_loop_time = 0
self.disc_acc = 0
self.er_count = 0
self.itr = 0
self.best_reward = 0
self.mode = 'Prep'
self.writer = SummaryWriter(log_dir=self.env.config_dir)
np.set_printoptions(precision=2)
np.set_printoptions(linewidth=220)
self.video_index = 0
def update_stats(self, module, attr, value):
v = {'forward_model': 0, 'discriminator': 1, 'policy': 2}
module_ind = v[module]
if attr == 'loss':
self.loss[module_ind] = self.run_avg * self.loss[module_ind] + (1 - self.run_avg) * np.asarray(value)
elif attr == 'accuracy':
self.disc_acc = self.run_avg * self.disc_acc + (1 - self.run_avg) * np.asarray(value)
def train_forward_model(self):
alg = self.algorithm
states_, actions, _, states = self.algorithm.er_agent.sample()[:4]
fetches = [alg.forward_model.minimize, alg.forward_model.loss]
feed_dict = {alg.states_: states_, alg.states: states, alg.actions: actions,
alg.do_keep_prob: self.env.do_keep_prob}
run_vals = self.sess.run(fetches, feed_dict)
self.update_stats('forward_model', 'loss', run_vals[1])
if self.itr % self.env.discr_policy_itrvl == 0:
self.writer.add_scalar('train/forward_model/loss', run_vals[1], self.itr)
def train_discriminator(self):
alg = self.algorithm
# get states and actions
state_a, action_a, rewards_a, state_a_, terminals_a = self.algorithm.er_agent.sample()[:5]
state_e, action_e, rewards_e, state_e_, terminals_e = self.algorithm.er_expert.sample()[:5]
states = np.concatenate([state_a, state_e])
dones = np.concatenate([terminals_a, terminals_e])
if not self.env.continuous_actions:
action_e = common.one_hot(action_e, num_classes=self.env.action_size)
actions = np.concatenate([action_a, action_e])
# labels (policy/expert) : 0/1, and in 1-hot form: policy-[1,0], expert-[0,1]
labels_a = np.zeros(shape=(state_a.shape[0],))
labels_e = np.ones(shape=(state_e.shape[0],))
labels = np.expand_dims(np.concatenate([labels_a, labels_e]), axis=1)
fetches = [alg.discriminator.minimize, alg.discriminator.loss, alg.discriminator.acc]
if self.env.use_airl:
states_ = np.concatenate([state_a_, state_e_])
feed_dict = {alg.states: states, alg.states_: states_, alg.done_ph: dones, alg.actions: actions,
alg.label: labels, alg.do_keep_prob: self.env.do_keep_prob}
else:
feed_dict = {alg.states: states, alg.actions: actions,
alg.label: labels, alg.do_keep_prob: self.env.do_keep_prob}
run_vals = self.sess.run(fetches, feed_dict)
self.update_stats('discriminator', 'loss', run_vals[1])
self.update_stats('discriminator', 'accuracy', run_vals[2])
if self.itr % self.env.discr_policy_itrvl == 0:
self.writer.add_scalar('train/discriminator/loss', run_vals[1], self.itr)
self.writer.add_scalar('train/discriminator/accuracy', run_vals[2], self.itr)
def get_recovered_reward(self, print_info=False):
alg = self.algorithm
# labels (policy/expert) : 0/1, and in 1-hot form: policy-[1,0], expert-[0,1]
if self.env.name in ['GridWorldGym-v0']:
# states = np.array([[0, 0], [0, 1], [0, 2], [0, 3], [0, 4],
# [1, 0], [1, 1], [1, 2], [1, 3], [1, 4],
# [2, 0], [2, 1], [2, 2], [2, 3], [2, 4],
# [3, 0], [3, 1], [3, 2], [3, 3], [3, 4],
# [4, 0], [4, 1], [4, 2], [4, 3], [4, 4],
# ])
# x-axis: Horizontal, y-axis: Vertical
obs_batch = []
num_y = 0
for pos_y in range(5):
num_y += 1
num_x = 0
for pos_x in range(5):
num_x += 1
obs_batch.append([pos_x, pos_y])
states = np.array(obs_batch)
labels_a = np.zeros(shape=(states.shape[0],))
labels = np.expand_dims(np.concatenate([labels_a]), axis=1)
fetches = [alg.disc_reward]
if self.env.use_airl:
feed_dict = {alg.states: states,
alg.label: labels, alg.do_keep_prob: self.env.do_keep_prob}
else:
feed_dict = {alg.states: states,
alg.label: labels, alg.do_keep_prob: self.env.do_keep_prob}
run_vals = self.sess.run(fetches, feed_dict)
recovered_reward = run_vals[0].reshape((num_x, num_y))
text = False # True
elif self.env.name in ['PointMazeLeft-v0', 'PointMazeRight-v0']:
boundary_low = -0.1
boundary_high = 0.6
grid_size = 0.005
obs_batch = []
num_y = 0
for pos_y in np.arange(boundary_low, boundary_high, grid_size):
num_y += 1
num_x = 0
for pos_x in np.arange(boundary_low, boundary_high, grid_size):
num_x += 1
obs_batch.append([pos_x, pos_y, 0.])
states = np.array(obs_batch)
labels_a = np.zeros(shape=(states.shape[0],))
labels = np.expand_dims(np.concatenate([labels_a]), axis=1)
fetches = [alg.disc_reward]
if self.env.use_airl:
feed_dict = {alg.states: states,
alg.label: labels, alg.do_keep_prob: self.env.do_keep_prob}
else:
feed_dict = {alg.states: states,
alg.label: labels, alg.do_keep_prob: self.env.do_keep_prob}
run_vals = self.sess.run(fetches, feed_dict)
recovered_reward = run_vals[0].reshape([num_x, num_y])
text = False
else:
raise NotImplementedError('Env {} is not implemented for recovered_reward()'.format(self.env.name))
if print_info:
print('Recovered reward: {}'.format(recovered_reward))
common.heatmap2d(hm_mat=recovered_reward, block=False, text=text,
save_path='{}'.format(
os.path.join(self.env.config_dir, 'recovered_reward_{}.png'.format(self.itr))), env_name=self.env.name)
hm_mat_val_normed = (recovered_reward - np.min(recovered_reward)) / (np.max(recovered_reward) - np.min(recovered_reward))
common.heatmap2d(hm_mat=hm_mat_val_normed, block=False, text=text,
save_path='{}'.format(os.path.join(self.env.config_dir, 'recovered_reward_normed_{}.png'.format(self.itr))), env_name=self.env.name)
return run_vals[0]
def visulize_forward_model(self):
alg = self.algorithm
qposs, qvels = alg.er_expert.sample(indexes=[1])[5:]
env_observation = self.env.reset(qpos=qposs[0], qvel=qvels[0])
noise_flag = False
do_keep_prob = 1.
env_next_observation_list = [env_observation]
pred_next_observation_list = [env_observation]
for i in range(19):
policy_actions = self.sess.run(fetches=[alg.action_test],
feed_dict={alg.states: np.reshape(env_observation, (1,) + self.env.state_size),
alg.do_keep_prob: do_keep_prob,
alg.noise: noise_flag,
alg.temp: self.env.temp})
feed_dict = {alg.states_: np.array([env_observation]), alg.actions: policy_actions,
alg.do_keep_prob: self.env.do_keep_prob}
pred_next_observation = self.sess.run(alg.forward_model_prediction, feed_dict)
env_observation, reward, done, info, qpos, qvel = self.env.step(policy_actions, mode='python')
env_next_observation_list.append(env_observation)
pred_next_observation_list.append(np.squeeze(pred_next_observation, axis=0).copy())
env_next_observation_list_np = np.hstack(env_next_observation_list)
pred_next_observation_list_np = np.hstack(pred_next_observation_list)
error = ((pred_next_observation_list_np - env_next_observation_list_np) + 255) / 2
observation_img = np.vstack([env_next_observation_list_np, pred_next_observation_list_np, error])
save_path = '{}'.format(
os.path.join(self.env.config_dir, 'visualize_fm_{}.png'.format(self.itr)))
cv2.imwrite(save_path, cv2.cvtColor(observation_img, cv2.COLOR_RGB2BGR))
def train_policy(self):
alg = self.algorithm
# reset the policy gradient
self.sess.run([alg.policy.reset_grad_op], {})
# Adversarial Learning
if self.env.get_status():
state = self.env.reset()
else:
state = self.env.get_state()
# Accumulate the (noisy) adversarial gradient
for i in range(self.env.policy_accum_steps):
# accumulate AL gradient
fetches = [alg.policy.accum_grads_al, alg.policy.loss_al]
feed_dict = {alg.states: np.array([state]), alg.gamma: self.env.gamma,
alg.do_keep_prob: self.env.do_keep_prob, alg.noise: 1., alg.temp: self.env.temp}
run_vals = self.sess.run(fetches, feed_dict)
self.update_stats('policy', 'loss', run_vals[1])
if i == self.env.policy_accum_steps - 1 and self.itr % self.env.discr_policy_itrvl == 0:
self.writer.add_scalar('train/policy/loss', run_vals[1], self.itr)
# apply AL gradient
self.sess.run([alg.policy.apply_grads_al], {})
def collect_experience(self, record=1, vis=0, n_steps=None, noise_flag=True, start_at_zero=True):
alg = self.algorithm
# environment initialization point
if start_at_zero:
observation = self.env.reset()
else:
qposs, qvels = alg.er_expert.sample()[5:]
observation = self.env.reset(qpos=qposs[0], qvel=qvels[0])
do_keep_prob = self.env.do_keep_prob
t = 0
R = 0
done = 0
frames = list()
if n_steps is None:
n_steps = self.env.n_steps_test
while not done:
if vis:
self.env.render()
if not self.env.train_mode and self.env.save_video:
img = self.env.render(mode='rgb_array')
assert img is not None, img
frames.append(img)
if not noise_flag:
do_keep_prob = 1.
a = self.sess.run(fetches=[alg.action_test], feed_dict={alg.states: np.reshape(observation, (1,) + self.env.state_size),
alg.do_keep_prob: do_keep_prob,
alg.noise: noise_flag,
alg.temp: self.env.temp})
observation, reward, done, info, qpos, qvel = self.env.step(a, mode='python')
done = done or t > n_steps
t += 1
R += reward
if record:
if self.env.continuous_actions:
action = a
else:
action = np.zeros((1, self.env.action_size))
action[0, a[0]] = 1
alg.er_agent.add(actions=action, rewards=[reward], next_states=[observation], terminals=[done],
qposs=[qpos], qvels=[qvel])
if len(frames) > 0:
if not os.path.isdir(self.env.config_dir):
os.mkdir(self.env.config_dir)
fps = 2 if self.env.name.startswith('GridWorld') else 64
clip = mpy.ImageSequenceClip(frames, fps=fps)
clip.write_videofile(os.path.join(self.env.config_dir, 'eval_{}_{:.2f}.mp4'.format(self.video_index, R)),
fps=fps)
self.video_index += 1
return R
def train_step(self):
# phase_1 - Adversarial training
# forward_model: learning from agent data
# discriminator: learning in an interleaved mode with policy
# policy: learning in adversarial mode
# Fill Experience Buffer
if self.itr == 0:
while self.algorithm.er_agent.current == self.algorithm.er_agent.count:
self.collect_experience()
buf = 'Collecting examples...%d/%d' % \
(self.algorithm.er_agent.current, self.algorithm.er_agent.states.shape[0])
sys.stdout.write('\r' + buf)
# Adversarial Learning
else:
self.train_forward_model()
self.mode = 'Prep'
if self.itr < self.env.prep_time and self.env.alg != 'mairlTransfer':
self.train_discriminator()
else:
self.mode = 'AL'
if self.discriminator_policy_switch and self.env.alg != 'mairlTransfer': # and (self.itr % self.env.discr_policy_itrvl < self.env.discr_policy_itrvl / 10):
self.train_discriminator()
else:
self.train_policy()
if self.itr % self.env.collect_experience_interval == 0:
# if self.env.name in ['Walker2d-v2', 'Hopper-v2', 'Humanoid-v2', 'Ant-v2', 'HalfCheetah-v2', 'Pendulum-v0', 'Swimmer-v2']:
# R = self.collect_experience(start_at_zero=False, n_steps=self.env.n_steps_train)
# else:
# R = self.collect_experience(start_at_zero=True, n_steps=self.env.n_steps_train)
R = self.collect_experience(start_at_zero=False, n_steps=self.env.n_steps_train)
self.writer.add_scalar('train/reward_mean', R, self.itr)
# switch discriminator-policy
if self.itr % self.env.discr_policy_itrvl == 0:
self.discriminator_policy_switch = not self.discriminator_policy_switch
# print progress
if self.itr % 100 == 0:
self.print_info_line('slim')
def print_info_line(self, mode):
if mode == 'full':
buf = '%s Training(%s): iter %d, loss: %s R: %.1f, R_std: %.2f\n' % \
(time.strftime("%H:%M:%S"), self.mode, self.itr, self.loss, self.reward_mean, self.reward_std)
else:
buf = "processing iter: %d, loss(forward_model,discriminator,policy): %s" % (self.itr, self.loss)
sys.stdout.write('\r' + buf)
def save_model(self, dir_name=None, info=None):
import os
if dir_name is None:
dir_name = os.path.join(self.run_dir, 'snapshots')
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
fname = os.path.join(dir_name, time.strftime("%Y-%m-%d-%H-%M-") + ('%0.6d.sn' % self.itr))
common.save_params(fname=fname, saver=self.saver, session=self.sess)
if info:
with open(os.path.join(dir_name, 'log.txt'), 'a') as f:
f.write("{0}: {1}\n".format(fname, info))