forked from visionml/pytracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
complex.py
211 lines (147 loc) · 5.84 KB
/
complex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from pytracking.libs.tensorlist import tensor_operation
def is_complex(a: torch.Tensor) -> bool:
return a.dim() >= 4 and a.shape[-1] == 2
def is_real(a: torch.Tensor) -> bool:
return not is_complex(a)
@tensor_operation
def mult(a: torch.Tensor, b: torch.Tensor):
"""Pointwise complex multiplication of complex tensors."""
if is_real(a):
if a.dim() >= b.dim():
raise ValueError('Incorrect dimensions.')
# a is real
return mult_real_cplx(a, b)
if is_real(b):
if b.dim() >= a.dim():
raise ValueError('Incorrect dimensions.')
# b is real
return mult_real_cplx(b, a)
# Both complex
c = mult_real_cplx(a[..., 0], b)
c[..., 0] -= a[..., 1] * b[..., 1]
c[..., 1] += a[..., 1] * b[..., 0]
return c
@tensor_operation
def mult_conj(a: torch.Tensor, b: torch.Tensor):
"""Pointwise complex multiplication of complex tensors, with conjugate on b: a*conj(b)."""
if is_real(a):
if a.dim() >= b.dim():
raise ValueError('Incorrect dimensions.')
# a is real
return mult_real_cplx(a, conj(b))
if is_real(b):
if b.dim() >= a.dim():
raise ValueError('Incorrect dimensions.')
# b is real
return mult_real_cplx(b, a)
# Both complex
c = mult_real_cplx(b[...,0], a)
c[..., 0] += a[..., 1] * b[..., 1]
c[..., 1] -= a[..., 0] * b[..., 1]
return c
@tensor_operation
def mult_real_cplx(a: torch.Tensor, b: torch.Tensor):
"""Pointwise complex multiplication of real tensor a with complex tensor b."""
if is_real(b):
raise ValueError('Last dimension must have length 2.')
return a.unsqueeze(-1) * b
@tensor_operation
def div(a: torch.Tensor, b: torch.Tensor):
"""Pointwise complex division of complex tensors."""
if is_real(b):
if b.dim() >= a.dim():
raise ValueError('Incorrect dimensions.')
# b is real
return div_cplx_real(a, b)
return div_cplx_real(mult_conj(a, b), abs_sqr(b))
@tensor_operation
def div_cplx_real(a: torch.Tensor, b: torch.Tensor):
"""Pointwise complex division of complex tensor a with real tensor b."""
if is_real(a):
raise ValueError('Last dimension must have length 2.')
return a / b.unsqueeze(-1)
@tensor_operation
def abs_sqr(a: torch.Tensor):
"""Squared absolute value."""
if is_real(a):
raise ValueError('Last dimension must have length 2.')
return torch.sum(a*a, -1)
@tensor_operation
def abs(a: torch.Tensor):
"""Absolute value."""
if is_real(a):
raise ValueError('Last dimension must have length 2.')
return torch.sqrt(abs_sqr(a))
@tensor_operation
def conj(a: torch.Tensor):
"""Complex conjugate."""
if is_real(a):
raise ValueError('Last dimension must have length 2.')
# return a * torch.Tensor([1, -1], device=a.device)
return complex(a[...,0], -a[...,1])
@tensor_operation
def real(a: torch.Tensor):
"""Real part."""
if is_real(a):
raise ValueError('Last dimension must have length 2.')
return a[..., 0]
@tensor_operation
def imag(a: torch.Tensor):
"""Imaginary part."""
if is_real(a):
raise ValueError('Last dimension must have length 2.')
return a[..., 1]
@tensor_operation
def complex(a: torch.Tensor, b: torch.Tensor = None):
"""Create complex tensor from real and imaginary part."""
if b is None:
b = a.new_zeros(a.shape)
elif a is None:
a = b.new_zeros(b.shape)
return torch.cat((a.unsqueeze(-1), b.unsqueeze(-1)), -1)
@tensor_operation
def mtimes(a: torch.Tensor, b: torch.Tensor, conj_a=False, conj_b=False):
"""Complex matrix multiplication of complex tensors.
The dimensions (-3, -2) are matrix multiplied. -1 is the complex dimension."""
if is_real(a):
if a.dim() >= b.dim():
raise ValueError('Incorrect dimensions.')
return mtimes_real_complex(a, b, conj_b=conj_b)
if is_real(b):
if b.dim() >= a.dim():
raise ValueError('Incorrect dimensions.')
return mtimes_complex_real(a, b, conj_a=conj_a)
if not conj_a and not conj_b:
return complex(torch.matmul(a[..., 0], b[..., 0]) - torch.matmul(a[..., 1], b[..., 1]),
torch.matmul(a[..., 0], b[..., 1]) + torch.matmul(a[..., 1], b[..., 0]))
if conj_a and not conj_b:
return complex(torch.matmul(a[..., 0], b[..., 0]) + torch.matmul(a[..., 1], b[..., 1]),
torch.matmul(a[..., 0], b[..., 1]) - torch.matmul(a[..., 1], b[..., 0]))
if not conj_a and conj_b:
return complex(torch.matmul(a[..., 0], b[..., 0]) + torch.matmul(a[..., 1], b[..., 1]),
torch.matmul(a[..., 1], b[..., 0]) - torch.matmul(a[..., 0], b[..., 1]))
if conj_a and conj_b:
return complex(torch.matmul(a[..., 0], b[..., 0]) - torch.matmul(a[..., 1], b[..., 1]),
-torch.matmul(a[..., 0], b[..., 1]) - torch.matmul(a[..., 1], b[..., 0]))
@tensor_operation
def mtimes_real_complex(a: torch.Tensor, b: torch.Tensor, conj_b=False):
if is_real(b):
raise ValueError('Incorrect dimensions.')
if not conj_b:
return complex(torch.matmul(a, b[..., 0]), torch.matmul(a, b[..., 1]))
if conj_b:
return complex(torch.matmul(a, b[..., 0]), -torch.matmul(a, b[..., 1]))
@tensor_operation
def mtimes_complex_real(a: torch.Tensor, b: torch.Tensor, conj_a=False):
if is_real(a):
raise ValueError('Incorrect dimensions.')
if not conj_a:
return complex(torch.matmul(a[..., 0], b), torch.matmul(a[..., 1], b))
if conj_a:
return complex(torch.matmul(a[..., 0], b), -torch.matmul(a[..., 1], b))
@tensor_operation
def exp_imag(a: torch.Tensor):
"""Complex exponential with imaginary input: e^(i*a)"""
a = a.unsqueeze(-1)
return torch.cat((torch.cos(a), torch.sin(a)), -1)