## Warning: package 'rmarkdown' was built under R version 3.5.2
Date: 2019-07-16
R
version: 3.5.0
*Corresponding author: [email protected]
This document can be found at https://github.com/darwinanddavis/UsefulCode
This document outlines some useful R
code for plotting, cool functions, and other random tidbits.
Access structural attributes of unique classes, such as raster and ggmap (bbox).
# Normal example
df <- data.frame(X = c(1:5), Y = c(6:10))
str(df)
df$X
# `attr` method
require(ggmap)
map <- get_map("Atlanta", zoom = 12, source = "stamen", maptype = "toner-lines")
str(map)
attr(map, "bb")$ll.lat
Convert character to factor to numeric without conversion error
read.table(f, header = T, sep = ",", row.names = NULL, stringsAsFactors = FALSE, strip.white = TRUE)
f$V2 <- as.numeric(f$V2)
See call options for class
methods(class = "estUDm")
Set dynamic input for variable / assign variable to char vector
shadedens <- function(shadedens) {
# set shade density to clumped (to match food) or sparse
if (shadedens == "Random") {
NLCommand("set Shade-density \"Random\" ")
} else {
NLCommand("set Shade-density \"Clumped\" ")
}
}
shadedens("Clumped") # set clumped resources
Interactive network plots using d3
# Load package
install.packages("networkD3")
library(networkD3)
# Load energy projection data
URL <- "https://cdn.rawgit.com/christophergandrud/networkD3/master/JSONdata/energy.json"
Energy <- jsonlite::fromJSON(URL)
# Now we have 2 data frames: a 'links' data frame with 3 columns (from, to, value), and a 'nodes'
# data frame that gives the name of each node.
head(Energy$links)
head(Energy$nodes)
# Thus we can plot it
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes, Source = "source", Target = "target", Value = "value",
NodeID = "name", units = "TWh", fontSize = 12, nodeWidth = 30)
`?`(sankeyNetwork)
Optimal empty data frame
df <- data.frame(Date = as.Date(character()), X = numeric(), Y = integer(), stringsAsFactors = FALSE)
Add df cols with mutate
require(dplyr)
df <- data.frame(a = rnorm(10), b = (1:20))
df %>% mutate(c = rnorm(20), b = b * 67)
Change df
column names
colnames(data)[c(1, 2, 3)] <- c("TimeStamp", "Lat", "Long")
Remove multiple columns from df
### Remove multiple NA columns
rm_cols <- grep("NA", names(tt), ignore.case = F)
df[, colnames(df[, rm_cols])] <- list(NULL)
Check number of characters in each column
sapply(meso1, function(x) sum(nchar(x)))
Generic useful functions that I can't place under any other headings here
# dput() for converting outputs such as copied text or data tables into vectors
xx <- "Some copied text or table from the internet"
dput(xx)
Round up integers to optimal rounded value
nn <- c(46, 11, 23)
round_any(nn, 10)
round_any(nn, 10, ceiling)
round_any(nn, 10, floor)
Get summary stats for dataset (means)
means = aggregate(Cumulative_cercs ~ r * hb, data = df, FUN = mean)
Remove annoying stock gridlines from plot window
plot + theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"))
# alternative (after loading ggridges library)
theme_ridges(grid = F, center_axis_labels = T)
Setting global graphics theme for ggplot
plot_it_gg <- function(bg, family) {
# bg = colour to plot bg, family = font family
theme_tufte(base_family = family) + theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), panel.background = element_rect(fill = bg, colour = bg),
plot.background = element_rect(fill = bg)) + theme(axis.line = element_line(color = "white")) +
theme(axis.ticks = element_line(color = "white")) + theme(plot.title = element_text(colour = "white")) +
theme(axis.title.x = element_text(colour = "white"), axis.title.y = element_text(colour = "white")) +
theme(axis.text.x = element_text(color = "white"), axis.text.y = element_text(color = "white")) +
theme(legend.key = element_rect(fill = bg)) + theme(legend.title = element_text(colour = "white")) +
theme(legend.text = element_text(colour = "white"))
}
Put plot in function to take dynamic data inputs Ref: http://jcborras.net/carpet/visualizing-political-divergences-2012-local-elections-in-helsinki.html
hr.mass.plot <- function(d) {
p <- ggplot(d, aes(HR, Mass, color = colfunc)) + geom_density_2d(data = d, aes(x = HR, y = Mass),
stat = "density2d", position = "identity", color = adjustcolor("orange", alpha = 0.8), size = 1.5,
contour = T, lineend = "square", linejoin = "round")
p <- p + geom_point(data = d, aes(x = HR, y = Mass), color = colfunc, fill = colfunc) + scale_color_manual(values = magma(8))
p <- p + scale_y_continuous(limits = c(-200, 200), name = "Mass lost (g)")
p <- p + scale_x_continuous(limits = c(0, 0.35), name = expression("Home range area (km^2)"))
p <- p + theme_classic()
print(p)
}
hr.mass.plot(d)
Using ggplot
when looping through for
loop and saving to dir
pdf("mypdf.pdf", onefile = T)
for (i in 1:3) {
par(bty = "n", las = 1)
grid.arrange(ggplot(data, aes(x = X, y = Y, fill = ..x..)) + geom_density_ridges_gradient(scale = 5,
size = 0.2, color = "black", rel_min_height = 0.01, panel_scaling = T, alpha = 0.2) + geom_density_ridges(scale = 5,
size = 0.2, color = "black", rel_min_height = 0.01, fill = "white", alpha = 0.2) + scale_fill_viridis(name = "Diameter",
alpha = 0.1, option = "magma", direction = -1) + xlim(c(0, 25)) + labs(title = paste0("Title_",
i)) + xlab("X") + ylab("Y"))
}
# end loop
dev.off()
# geom_density_ridges() # scale = overlap
# geom_density_ridges(scale = 5, size=0.2,color='white', rel_min_height = 0.01,fill=col,alpha=0.5) +
# scale_fill_viridis option = 'magma', 'inferno','plasma', 'viridis', 'cividis'
Converting lists and dataframes to usable format for ggplot
(melt
package)
# ------------------------- plot individual outputs -------------------------
mm_ = readRDS(paste0(model.path, fh, ".R"))
cat("order = cerc, food, juv, adult, infected, infected shedding, host length, parasite mass")
# plot master
mm <- mm_[[2]]
y_m <- melt(mm)
y_m
ggplot() + geom_point(data = y_m, aes(x = rep.int(1:n.ticks, max(L1)), y = value, group = L1, colour = factor(L1)),
) + geom_line(data = y_m, aes(x = rep.int(1:n.ticks, max(L1)), y = value, group = L1, colour = factor(L1)),
) + # linetype=y_m$L1) +
theme_tufte()
# + geom_text(x=,y=,label = max(value),check_overlap = TUE)
Insert math expression in legend title
ggplot() + labs(title = bquote("Hello" ~ r[xy] ~ "and" ~ B^2))
Create double line break with expression in legend title (and labels)
ggplot() + scale_color_manual(expression(atop("text", atop(textstyle(epsilon)))))
Find maximum value in entire list
master <- list(1:10, 100, rnorm(12))
do.call(max, master)
Plot all elements in a list
xx <- list(sample(5, 1000, replace = T), rnorm(1000), sample(50, 1000, replace = T))
plot(unlist(xx), type = "l")
Apply each row of df or vector to individual elements of a list
df = data.frame(events = LETTERS[1:10], outs = 1:10)
sapply(df$outs, list)
Append extra element onto existing list
rv <- sample(1000, 15) # random vector
listvec <- sapply(rep(NA, 7), list) # list with 7 empty elements
listvec_final <- c(listvec, list(rv)) # append rv
listvec_final <- c(listvec, rv) # to append rv contents as separate elements, remove internal list
Save loop output in master list
pars <- seq(0, 1, 0.5)
master <- list()
t_list <- list()
for (p in 1:length(pars)) {
for (t in 5) {
tt <- rnorm(1000 * t)
t_list[t] <- tt
}
master[[length(master) + 1]] <- t_list # store in master list
}
Optimal way to save results to data frame in loop
require(dplyr)
fun <- sum # sum # choose mean or sum
out_first <- list() # create first empty list
out_second <- list() # create second empty list
for (me in 1:10) {
global_output_fh = paste0(getwd(), "/", me, ".R") # get file handle
output <- readRDS(global_output_fh) # read in file
cercs <- output[[1]] # get data
# define function
SEM = function(x) {
sd(x)/sqrt(length(x))
}
# create col name to pass to aggregate function
cerc_outs = list(Outs = cercs)
outs = aggregate(Outs ~ ., data = cerc_outs, FUN = fun)
cerc_se = list(SEs = cercs)
se = aggregate(SEs ~ ., data = cerc_se, FUN = SEM)
# save to df by creating new df cols
outs$me <- me # create new col with iteration
out_first[[me]] <- outs # add first output to list
out_second[[me]] <- se # add second output to list
} # end file read
# option 1
out_final = do.call(rbind, out_first)
# option 2
out_final <- bind_rows(out_first) # make fresh df
out_final$Second <- bind_rows(out_second) # add second col
High res maps
# https://hecate.hakai.org/rguide/mapping-in-r.html
require(maptools)
d <- map_data("worldHires", c("Colombia", "Ecuador", "Peru", "Panama"))
# plot
ggplot() + geom_polygon(data = d, aes(x = long, y = lat, group = group), fill = "black", col = "pink") +
# theme_tufte(ticks=F) +
theme_nothing() + coord_map("mercator", xlim = c(-75, -81), ylim = c(-2, 8))
Read in KMZ/KML data (Google Maps data)
require(sf)
zp <- sf::st_read("ziggy_test.kml")
Display status message of progress
for (i in 1:10) {
Sys.sleep(0.2)
# Dirk says using cat() like this is naughty ;-) cat(i,'\r') So you can use message() like this,
# thanks to Sharpie's comment to use appendLF=FALSE.
message(i, "\r", appendLF = FALSE) # appendLF = new line
flush.console()
}
Display popup progress bar
require(tcltk)
pb <- tkProgressBar("test progress bar", "Some information in %", 0, 100, 50)
Sys.sleep(0.5)
u <- c(0, sort(runif(20, 0, 100)), 100)
for (i in u) {
Sys.sleep(0.1)
info <- sprintf("%d%% done", round(i))
setTkProgressBar(pb, i, sprintf("test (%s)", info), info)
}
Sys.sleep(5)
close(pb)
Replace NAs and NaNs with 0's
df[is.na(df)] <- 0
df[is.nan(df)] <- 0 # good for matrices
Replace X values less than given value (V) with 0
df$X[df$X < V] <- 0
Check for NAs
sapply(df, function(x) sum(is.na(x)))
snail.update[is.nan(snail.update)] <- 0 Replace NaN
and Inf
values with NA
df$col1[which(!is.finite(df$col1))] <- NA
Fill in missing data values in sequence with NA
# /Users/malishev/Documents/Manuscripts/Chapter4/Sims/Chapter4_figs.R
library(zoo)
data <- data.frame(index = c(1:4, 6:10), data = c(1.5, 4.3, 5.6, 6.7, 7.1, 12.5, 14.5, 16.8, 3.4))
# you can create a series
z <- zoo(data$data, data$index)
# end extend it to the grid 1:10
z <- merge(zoo(, 1:10), z)
# worked example fill in missing Tb values
minTb.d <- zoo(minTb$Tick, minTb$Days)
minTb.d <- merge(zoo(NULL, 1:days), minTb.d) # make the minTb series match the temp series (117 days)
minTb.d <- as.numeric(minTb.d) # = time individuals reached VTMIN in ticks
minTb <- minTb.d - temp$Tick # get diff between starting time and time to reach VTMIN
minTb <- minTb/2 # convert ticks to minutes
minTb <- minTb/60 #convert to hours
minTb <- data.frame(Days = 1:days, Time = minTb)
# then fill in missing values
approx(minTb$Time, method = "linear")
Remove rows with NA
data <- data[!is.na(data$X), ]
Turn NULLs in list into NAs to get numeric values (fix for 'cannot coerce double' error)
hl_list <- lapply(hl_list, function(x) ifelse(x == "NULL", NA, x))
Turn NaN or NAs in list into 0s
# NaN
global_output <- rapply(global_output, f = function(x) ifelse(is.nan(x), 0, x), how = "replace")
# NA
global_output <- rapply(global_output, f = function(x) ifelse(is.na(x), 0, x), how = "replace")
rLandsat
Sourcing, requesting, and downloading NASA Landsat 8 satellite data.
Radix
Improved RMarkdown
output and interaction.
rpanel
Reference guide
Create interactive GUI control toggles from R
. Like an early Shiny.
Plot one plot window above and two below
layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))
Bookend axis ticks for plot E.g. at 0 and 100 when data is 1:99
axis(1, at = c(0, length(loco$X)), labels = c("", "")) # bookending axis tick marks
Optimal legend formatting for base
legend("right", legend = c("Small", "Intermediate", "Large"), col = c(colfunc[colvec[1:3]]), bty = "n",
pch = 20, pt.cex = 1.5, cex = 0.7, y.intersp = 0.5, xjust = 0.5, title = "Size class", title.adj = 0.3,
text.font = 2, trace = T, inset = 0.1)
Plot inset plot in current plot (https://stackoverflow.com/questions/17041246/how-to-add-an-inset-subplot-to-topright-of-an-r-plot)
# calculate position of inset
plotdim <- par("plt") # get plot window dims as fraction of current plot dims
xleft = plotdim[2] - (plotdim[2] - plotdim[1]) * 0.5
xright = plotdim[2] #
ybottom = plotdim[4] - (plotdim[4] - plotdim[3]) * 0.5 #
ytop = plotdim[4] #
# set position for plot inset
par(fig = c(xleft, xright, ybottom, ytop), mar = c(0, 0, 0, 0), new = TRUE)
boxplot(Eggs ~ Size, data = meso2, col = adjustcolor(colfunc[colvec[1:3]], alpha = 0.5), notch = T, xlab = "Week",
ylab = "Diameter (mm)", xaxs = "i", yaxs = "i")
Interactive plots with rCharts (javascript and d3 viz) http://ramnathv.github.io/rCharts/
require(devtools)
install_github("rCharts", "ramnathv")
Cluster plot https://rpubs.com/dgrtwo/technology-clusters
library(readr)
library(dplyr)
library(igraph)
library(ggraph)
library(ggforce)
# This shared file contains the number of question that have each pair of tags This counts only
# questions that are not deleted and have a positive score
tag_pair_data <- read_csv("http://varianceexplained.org/files/tag_pairs.csv.gz")
relationships <- tag_pair_data %>% mutate(Fraction = Cooccur/Tag1Total) %>% filter(Fraction >= 0.35) %>%
distinct(Tag1)
v <- tag_pair_data %>% select(Tag1, Tag1Total) %>% distinct(Tag1) %>% filter(Tag1 %in% relationships$Tag1 |
Tag1 %in% relationships$Tag2) %>% arrange(desc(Tag1Total))
a <- grid::arrow(length = grid::unit(0.08, "inches"), ends = "first", type = "closed")
set.seed(2016)
relationships %>% graph_from_data_frame(vertices = v) %>% ggraph(layout = "fr") + geom_edge_link(aes(alpha = Fraction),
arrow = a) + geom_node_point(aes(size = Tag1Total), color = "lightblue") + geom_node_text(aes(size = Tag1Total,
label = name), check_overlap = TRUE) + scale_size_continuous(range = c(2, 9)) + ggforce::theme_no_axes() +
theme(legend.position = "none")
Define global plotting graphics function.
The plot_it.R
function is updated on the plot_it Github page.
require(ggplot2)
require(ggthemes)
### set plotting params plotting function (plot for MS or not, set bg color, set color palette from
### RColorBrewer, set alpha value for transperancy)
plot_it <- function(manuscript, bg, cp1, cp2, alpha, family) {
graphics.off()
if (manuscript == 0) {
if (bg == "black") {
colvec <<- magma(200, 1) # plot window bg # USES <<- OPERATOR
par(bg = colvec[1], col.axis = "white", col.lab = "white", col.main = "white", fg = "white",
bty = "n", las = 1, mar = c(5, 6, 4, 2), family = family) #mono
border = adjustcolor("purple", alpha = 0.5)
} else {
colvec <<- bpy.colors(200) # plot window bg # USES <<- OPERATOR
par(bg = colvec[1], col.axis = "white", col.lab = "white", col.main = "white", fg = "white",
bty = "n", las = 1, mar = c(5, 6, 4, 2), family = family)
border = adjustcolor("blue", alpha = 0.5)
}
} else {
# graphics.off()
par(bty = "n", las = 1, family = family)
colv <- "white"
}
# color palettes ifelse(manuscript==1,colvec<-adjustcolor(brewer.pal(9,cp1)[9], alpha = alpha),colvec
# <- adjustcolor(brewer.pal(9,cp1)[5], alpha = alpha)) # fine tune plotting colors for plotting bg
# colfunc <<- colorRampPalette(brewer.pal(9,cp1),alpha=alpha)
cp1_info <- brewer.pal.info[cp1, ]$maxcolors
cp2_info <- brewer.pal.info[cp2, ]$maxcolors
colv <<- brewer.pal(cp1_info, cp1) # USES <<- OPERATOR
colv2 <<- brewer.pal(cp2_info, cp2) # USES <<- OPERATOR
}
# Setting ggplot theme graphics bg = colour to plot bg, family = font family
plot_it_gg <- function(bg) {
if (bg == "white") {
bg <- "white"
fg <- "black"
theme_tufte(base_family = "HersheySans") + theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), panel.background = element_rect(fill = bg, colour = bg),
plot.background = element_rect(fill = bg)) + theme(axis.line = element_line(color = fg)) +
theme(axis.ticks = element_line(color = fg)) + theme(plot.title = element_text(colour = fg)) +
theme(axis.title.x = element_text(colour = fg), axis.title.y = element_text(colour = fg)) +
theme(axis.text.x = element_text(color = fg), axis.text.y = element_text(color = fg)) + theme(legend.key = element_rect(fill = bg)) +
theme(legend.title = element_text(colour = fg)) + theme(legend.text = element_text(colour = fg))
}
} # end gg
### Set plotting function
require("RCurl")
script <- getURL("https://raw.githubusercontent.com/darwinanddavis/plot_it/master/plot_it.R", ssl.verifypeer = FALSE)
eval(parse(text = script))
cat("plot_it( \n0 for presentation, 1 for manuscript, \nset colour for background, \nset colour palette. use 'display.brewer.all()', \nset alpha for colour transperancy, \nset font style \n)")
plot_it(0, "blue", "Spectral", "Greens", 1, "mono") # set col function params
plot_it_gg("white") # same as above
Make plot cycle on one page
plot(m_abundance$gam, pages = 1)
Get plot summaries and values from plot
plot.gam(m_abundance$gam, shade = T, pages = 1, seWithMean = T)[1] # everything
plot.gam(m_abundance$gam, shade = T, pages = 1, seWithMean = T)[1][[1]]$x #subset x
plot.gam(m_abundance$gam, shade = T, pages = 1, seWithMean = T)[1][[1]]$fit #get values to produce fit curve
Package for stock world maps
# worldmap
library(choroplethrMaps)
Circle packing, tree, dendogram, network plots
# dendogram tree nested bubble circle packing network
# https://www.r-graph-gallery.com/313-basic-circle-packing-with-several-levels/
# circle packing plot Libraries
p <- c("ggraph", "igraph", "tidyverse", "DeducerSpatial", "Rcpp", "car")
install.packages(p, dependencies = T)
lapply(p, library, character.only = T)
# We need a data frame giving a hierarchical structure. Let's consider the flare dataset:
edges = flare$edges
# edges cols = character
# Usually we associate another dataset that give information about each node of the dataset:
vertices = flare$vertices
# vertices cols = character, numeric, character
# Create a subset of the dataset (I remove 1 level)
edges = flare$edges %>% filter(to %in% from) %>% droplevels()
vertices = flare$vertices %>% filter(name %in% c(edges$from, edges$to)) %>% droplevels()
vertices$size = runif(nrow(vertices))
# Then we have to make a 'graph' object using the igraph library:
mygraph <- graph_from_data_frame(edges, vertices = vertices)
# circle packing
ggraph(mygraph, layout = "circlepack", weight = "size", sort.by = NULL, direction = "out") + geom_node_circle(aes(fill = depth)) +
geom_node_text(aes(label = shortName, filter = leaf, fill = depth, size = size)) + theme_void() +
# theme(legend.position='F') + #show legend
scale_fill_viridis(alpha = 0.5, direction = -1, option = "magma")
# scale_fill_distiller(palette = 'Blues')
# geom_node_label(aes(label=shortName, filter=leaf, size=size)) + # add text boxes
# circular dendo
str(mygraph)
ggraph(mygraph, layout = "dendrogram", circular = T) + geom_edge_diagonal(flipped = F, label_colour = "black",
label_alpha = 1, angle_calc = "rot", force_flip = TRUE, label_dodge = NULL, label_push = NULL, show.legend = NA) +
theme_void() + # theme(legend.position='none') +
scale_fill_distiller(palette = "Blues")
# tree map
ggraph(mygraph, "treemap", weight = "size") + geom_node_tile(aes(fill = depth), size = 0.25) + theme_void() +
theme(legend.position = "none")
# circular partition
ggraph(mygraph, "partition", circular = TRUE) + geom_node_arc_bar(aes(fill = depth), size = 0.25) + theme_void() +
theme(legend.position = "none")
# node
ggraph(mygraph) + geom_edge_link() + geom_node_point() + theme_void() + theme(legend.position = "none")
Insert an animal silhouette into a plot
# 1. Get image from http://www.phylopic.org
library(png)
ima <- readPNG("thething.png")
plot(1:3, 1:3)
rasterImage(image = ima, xleft = 2, ybottom = 1.8, xright = 2.7, ytop = 2.7)
Create an empty plot window
# 1
plot(0, type = "n", axes = FALSE, ann = FALSE)
# 2
plot(1, type = "n", xlab = "", ylab = "", xlim = c(0, 10), ylim = c(0, 10))
# 3
plot.new()
Set color gradient, palette for smoothing data points
require(RColorBrewer)
alpha <- 0.8 # transparency (0 to 1 value)
set.seed(5000)
rr <- rnorm(5000)
# user defined gradient
col <- colorRampPalette(c("steelblue", "lightblue", "orange", "red")) # set your own col gradient with as many colours as you want
colfunc <- col(length(rr))[as.numeric(cut(rr, breaks = length(rr)))] # define breaks in col gradient
plot(rr, col = colfunc, pch = 20)
# gradient from palette
display.brewer.all()
col <- "Greens"
col <- colorRampPalette(brewer.pal(brewer.pal.info[col, ]$maxcolors, col)) # col gradient
colfunc <- col(length(rr))[as.numeric(cut(rr, breaks = length(rr)))] # define breaks in col gradient
plot(rr, col = colfunc, pch = 20)
Add plot point every nth element
n <- 3
plot(runif(10, 0, 1), type = "o", pch = c(20, rep(NA, n)))
Create function to make line as default type in plot
lplot <- function(...) plot(..., type = "l")
lplot(runif(200))
Stack dataframe columns automatically in plot
head(outplot)
# time N P S I 1 0.00 200.000000 200.0000 20.00000 2.000000 2 0.01 78.245140 177.1952 20.58217
# 2.067159 3 0.02 34.785145 168.9650 21.12174 2.136073
dats <- zoo(outplot)
plot(dats)
Make 3D scatterplot
require(scatterplot3d)
xx <- rnorm(1000)
yy <- runif(1000)
dens <- c(rep(1e-04, 500), rep(1, 500))
controls <- runif(3)
add.control <- 1
dens_val <- 1 * 10^-10 # 0 or 1*10^-10. value to knock out blanket of colour on plot surface
# linear model of r/ship between coords
dens_lm <- lm(dens ~ xx + yy)
xlim <- c(min(xx), max(xx))
ylim <- c(min(yy), max(yy))
zlim = c(min(dens), max(dens)) # set lims
colv <- "Blues"
colvv <- colorRampPalette(brewer.pal(brewer.pal.info[colv, ]$maxcolors, colv)) # col gradient
colvv <- colorRampPalette(c("steelblue", "lightblue", "orange", "red")) # set your own col gradient with as many colours as you want
# colvv<-colorRampPalette(magma(length(dens))) # set your own col gradient with as many colours as
# you want
# set col palette
colfunc <- colvv(length(dens))[as.numeric(cut(dens, breaks = length(dens)))] # define breaks in col gradient
bg <- bpy.colors(1)
alpha <- 0.8
# pdf(paste0(plot.dir,strat,'_',density,'_',stage,'_kudspdf.pdf'),width=8.27,height=11.69,paper='a4r')
# color=ifelse(col_heat==1, adjustcolor(colfunc, alpha=1),adjustcolor('lightgreen',alpha=0.2)),
scatterplot3d(x = xx, y = yy, z = dens, color = ifelse(dens <= dens_val, adjustcolor(ifelse(bg == bpy.colors(1),
bpy.colors(1), "white"), alpha = 0.1), adjustcolor(colfunc, alpha = alpha)), las = 1, pch = 15, type = "p",
lty.hplot = 1, xlim = xlim, ylim = ylim, zlim = zlim, xlab = "X", ylab = "Y", zlab = "Density", main = "Main",
box = F, lty.axis = par(1), grid = F, col.grid = adjustcolor("gray", 1), lty.grid = par(3), axis = T)
# other plot options cex.symbols=dens*3, cex.symbols = ifelse(z<=0,0,0.5), highlight.3d=T, angle=70,
# append the below section starting at the '$' to the above closing bracket
# $plane3d(dens_lm, # add 3d linear model plane. # ??plane3d(Intercept, x.coef = NULL, y.coef = NULL,
# lty = 'dashed', lty.box = NULL, draw_lines = TRUE, draw_polygon = FALSE, polygon_args = list(border
# = NA, col = rgb(0,0,0,0.2)) lty='dashed', lty.box = NULL, draw_lines = F, draw_polygon = T,
# polygon_args = list(border = NA, col = adjustcolor('light green',alpha=0.4)))
# add control dates
if (add.control == 1) {
par(new = T)
scatterplot3d(x = rep(0, length(controls)), y = controls, z = rep(max(dens), length(controls)), color = "gray",
las = 1, pch = "", lty.hplot = 1, xlim = xlim, ylim = ylim, zlim = zlim, xlab = "", ylab = "",
zlab = "", box = F, grid = F, cex.symbols = 2, axis = F, type = "h")
}
Adding title from separate list to plot in loop (ggplot
)
# plot all sim results in one window
gspl <- list()
ttl_list <- c("cerc", "food", "juv", "adult", "infec", "infec (shed)", "host L", "parasite mass")
# choose sim to plot
global_sim_plot <- global_detritus
for (g in 1:10) {
gspl[[g]] <- ggplot() + geom_line(data = y_m, aes(x = rep.int(1:n.ticks, max(L1)), y = value, group = L1,
colour = factor(L1)), ) + # scale_color_manual(values = viridis(length(mm))) + linetype=y_m$L1) +
theme_tufte() + labs(title = ttl_list[g], x = "", y = "") + if (g == length(global_sim_plot)) {
theme(legend.title = element_text(size = 0.2), legend.text = element_text(size = 0.2)) + theme(legend.position = "top")
labs(x = "Time")
} else {
theme(legend.position = "none")
}
}
# + geom_text(x=,y=,label = max(value),check_overlap = TUE)
do.call(grid.arrange, gspl) # plot in one window
Using math expressions in plot labels
plot(rnorm(1000), xlab = expression(paste("X values"^2)), ylab = expression(paste("Y values"^3, hat(beta))))
Adding faint gridlines to plot
# add gridlines
grid(nx = NA, ny = NULL)
Storing current par
variables for plotting
og_pars <- par(no.readonly = T) # store current par values
Clear graphics memory
dput(par(no.readonly = TRUE)) # reset graphical params
par()
Read in file manually
get.file.vol <- read.table(file.choose()) #read file manually
v.file <- get.file.vol[1:100, 1] #get the volume
Loop through files from dir and append to list
# option 1 reading in spdf (hrpath) files from drive
setwd("/Users/camel/Desktop/Matt2016/Manuscripts/MalishevBullKearney/Resubmission/2016/barcoo sims/barcooresults/hrpath_75")
file.list <- list.files()
hrs75 <- as.list(rep(1, 100)) # empty list
for (f in 1:100) {
load(file.list[f])
hrs75[f] <- hrpath
}
# working version converting spdf into mcp(spdf,100,unout='m2)
ghr <- list()
for (i in hrs75[1:10]) {
m <- mcp(i, 100, unout = "m2")
ghr <- c(ghr, m)
}
ghr
# option 2
wd <- getwd()
me_list <- list() # create list
for (me_day in c("A", "B", "C")) {
for (me_im in 1:5) {
mes <- readRDS(paste0(wd, resource_type, "_meday_", me_day, "_meim", me_im, ".R")) # read .R files from dir
cat("\n", paste0(wd, resource_type, "_meday_", me_day, "_meim", me_im, ".R"))
names(mes) <- c("cerc", "food", "juv", "adult", "infected", "infected shedding", "mean host length",
"mean parasite mass", "summed host biomass", "summed host eggs", "mean host eggs", "infected host length") # name all original R file list elements
mes <- mes$cerc # get cercs (as list) use mes$'cerc'[[1]] for numeric
names(mes) <- paste0(me_day, "_", me_im) # name list elements according to loop iterations
me_list <- c(me_list, mes) # bind to master list
}
}
Read in PDF files from online source in R and save to drive.
# from https://github.com/ropensci/pdftools
require(pdftools)
url <- "https://raw.githubusercontent.com/darwinanddavis/499R/master/exp_pop_growth.pdf"
dir <- "FOLDER ON YOUR COMPUTER WHERE YOU WANT THE FILE SAVED"
f <- "NAME OF THE FILE"
f <- paste0(f, ".pdf")
# run all this
download.file(url, paste0(dir, "/", f), mode = "wb")
txt <- pdf_text(paste0(dir, "/", f))
# first page text
page <- 1 # enter the page number
cat(txt[page])
toc <- pdf_toc(paste0(dir, "/", f))
require(jsonlite)
# Show as JSON
jsonlite::toJSON(toc, auto_unbox = TRUE, pretty = TRUE)
# show author, version, etc
info <- pdf_info(f)
# renders pdf to bitmap array
bitmap <- pdf_render_page(f, page = 1)
# save bitmap image
png::writePNG(bitmap, "page.png")
jpeg::writeJPEG(bitmap, "page.jpeg")
webp::write_webp(bitmap, "page.webp")
Read .txt files
readLines("search_terms.txt") # must have a blank line at end of file to avoid line read error
Load in data to avoid 'magic number error'
# avoid load()
readRDS("path to file .R") # can use .R and .Rdata
source("path to file .R")
Access files anywhere without changing working dir
# https://github.com/jennybc/here_here
require(here)
getwd()
# '/Users/malishev/Documents/Data/gggmap'
here_loc <- here("here_test", "here_test.txt")
here_loc
# '/Users/malishev/Documents/Data/gggmap/here_test/here_test.txt'
readLines(here_loc) # access the file even though your working dir is up N levels from the file in your dir
Get just numbers or characters
vec <- "16-Feb-2018 20:08:04 PM"
vecN <- gsub("[^[:digit:]]", "", vec)
vec
print(paste0("Just numbers: ", vecN))
vecC <- gsub("[[:digit:]]", "", vec)
vec
print(paste0("Just characters: ", vecC))
# with tidyr. requires data frame
require(tidyr)
df <- data.frame(N1 = c("APPLE348744", "BANANA77845", "OATS2647892", "EGG98586456"))
print("tidyr doesn't work with strings separated by spaces")
df %>% separate(N1, into = c("text", "num"), sep = "(?<=[A-Za-z])(?=[0-9])")
Insert or replace a character in a string at a specific location
require(stringi)
vec <- "ABCEF"
stri_sub(vec, 4, 2) <- "d"
print(paste0("Original: ABCEF"))
print(paste0("New: ", vec))
Testing regex expressions and their output
# Testing regex expressions and their output
# https://regex101.com/r/ksY7HU/2
Removing multiple cols from df using grep
packages <- c("dplyr", "purrr")
fh <- "LEC100testrecords.txt"
tt <- read.delim(paste0(wd, "/", fh), header = T, sep = "\t")
# Enter data column you want to search
col2search <- "Title"
keyterms <- c("evidence", "human", "africa")
# 1. find key terms
final <- tt[grep(keyterms, tt[, col2search], ignore.case = T), ] #
length(final[, col2search]) # get number of results
tt[final[, col2search], col2search] # show raw outputs
Hide unwanted code output, such as inherent examples for functions
# ```{r, cache = TRUE, tidy = TRUE, lazy = TRUE, results='markup'}
Math notation in R Markdown
x=y x = y
x<y
x>y x > y
x≤y x ≤ y
x≥y x ≥ y
xn xn
xn xn
x⎯⎯⎯
P(X≤x)=𝚙𝚋𝚒𝚗𝚘𝚖(x,n,π)
Greek Letters
αA α**A
νN
Select specific rows E.g. select rows of sfeed_move not in foodh
library(sqldf)
a1NotIna2_h <- sqldf("SELECT * FROM sfeed_move EXCEPT SELECT * FROM foodh")
a1NotIna2_l <- sqldf("SELECT * FROM sfeed_move EXCEPT SELECT * FROM foodl")
# select rows from sfeed_move that also appear in foodh
a1Ina2_h <- sqldf("SELECT * FROM sfeed_move INTERSECT SELECT * FROM foodh")
a1Ina2_l <- sqldf("SELECT * FROM sfeed_move INTERSECT SELECT * FROM foodl")
Count occurrences of values in data frame
table(unlist(df$X))
Remove a specific column from a data frame
within(df, rm("Col1"))
library(XML)
readHTMLTable()
Scraping Twitter timelines See complete example at http://varianceexplained.org/r/trump-tweets/
# https://cran.r-project.org/web/packages/twitteR/
library(dplyr)
library(purrr)
library(twitteR)