forked from zihangdai/xlnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gpu.py
328 lines (262 loc) · 10.6 KB
/
train_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""Pretraining on GPUs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
import math
import json
import time
import numpy as np
from absl import flags
import absl.logging as _logging # pylint: disable=unused-import
import tensorflow as tf
import data_utils
import model_utils
from gpu_utils import assign_to_gpu, average_grads_and_vars
import function_builder
# GPU config
flags.DEFINE_integer("num_hosts", default=1,
help="Number of hosts")
flags.DEFINE_integer("num_core_per_host", default=8,
help="Number of cores per host")
flags.DEFINE_bool("use_tpu", default=False,
help="Whether to use TPUs for training.")
# Experiment (data/checkpoint/directory) config
flags.DEFINE_integer("num_passes", default=1,
help="Number of passed used for training.")
flags.DEFINE_string("record_info_dir", default=None,
help="Path to local directory containing `record_info-lm.json`.")
flags.DEFINE_string("model_dir", default=None,
help="Estimator model_dir.")
flags.DEFINE_string("init_checkpoint", default=None,
help="checkpoint path for initializing the model.")
# Optimization config
flags.DEFINE_float("learning_rate", default=2.5e-4,
help="Maximum learning rate.")
flags.DEFINE_float("clip", default=0.25,
help="Gradient clipping value.")
# for cosine decay
flags.DEFINE_float("min_lr_ratio", default=0.004,
help="Minimum ratio learning rate.")
flags.DEFINE_integer("warmup_steps", default=0,
help="Number of steps for linear lr warmup.")
flags.DEFINE_float("adam_epsilon", default=1e-8,
help="Adam epsilon")
flags.DEFINE_string("decay_method", default="poly",
help="poly or cos")
flags.DEFINE_float("weight_decay", default=0.0,
help="weight decay")
# Training config
flags.DEFINE_integer("train_batch_size", default=60,
help="Size of train batch.")
flags.DEFINE_integer("train_steps", default=100000,
help="Total number of training steps.")
flags.DEFINE_integer("iterations", default=500,
help="Number of iterations per repeat loop.")
flags.DEFINE_integer("save_steps", default=10000,
help="number of steps for model checkpointing.")
# Data config
flags.DEFINE_integer('seq_len', default=0,
help='Sequence length for pretraining.')
flags.DEFINE_integer('reuse_len', default=0,
help="How many tokens to be reused in the next batch. "
"Could be half of seq_len")
flags.DEFINE_bool("bi_data", default=True,
help="Use bidirectional data streams, i.e., forward & backward.")
flags.DEFINE_integer("mask_alpha", default=2,
help="How many tokens to form a group.")
flags.DEFINE_integer("mask_beta", default=1,
help="How many tokens to mask within each group.")
flags.DEFINE_integer("num_predict", default=None,
help="Number of tokens to predict in partial prediction.")
flags.DEFINE_integer('perm_size', default=None,
help='perm size.')
flags.DEFINE_bool("uncased", False,
help="Use uncased inputs or not.")
flags.DEFINE_integer("n_token", 32000, help="Vocab size")
# Model config
flags.DEFINE_integer("mem_len", default=70,
help="Number of steps to cache")
flags.DEFINE_bool("same_length", default=False,
help="Same length attention")
flags.DEFINE_integer("clamp_len", default=-1,
help="Clamp length")
flags.DEFINE_integer("n_layer", default=6,
help="Number of layers.")
flags.DEFINE_integer("d_model", default=500,
help="Dimension of the model.")
flags.DEFINE_integer("d_embed", default=500,
help="Dimension of the embeddings.")
flags.DEFINE_integer("n_head", default=10,
help="Number of attention heads.")
flags.DEFINE_integer("d_head", default=50,
help="Dimension of each attention head.")
flags.DEFINE_integer("d_inner", default=1000,
help="Dimension of inner hidden size in positionwise feed-forward.")
flags.DEFINE_float("dropout", default=0.1,
help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.1,
help="Attention dropout rate.")
flags.DEFINE_bool("untie_r", default=False,
help="Untie r_w_bias and r_r_bias")
flags.DEFINE_string("summary_type", default="attn",
help="Method used to summarize a sequence into a compact vector.")
flags.DEFINE_string("ff_activation", default="relu",
help="Activation type used in position-wise feed-forward.")
flags.DEFINE_bool("use_bfloat16", False,
help="Whether to use bfloat16.")
# Parameter initialization
flags.DEFINE_enum("init", default="normal",
enum_values=["normal", "uniform"],
help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02,
help="Initialization std when init is normal.")
flags.DEFINE_float("init_range", default=0.1,
help="Initialization std when init is uniform.")
FLAGS = flags.FLAGS
def get_model_fn():
def model_fn(features, labels, mems, is_training):
#### Get loss from inputs
total_loss, new_mems, monitor_dict = function_builder.get_loss(
FLAGS, features, labels, mems, is_training)
#### Check model parameters
num_params = sum([np.prod(v.shape) for v in tf.trainable_variables()])
tf.logging.info('#params: {}'.format(num_params))
# GPU
assert is_training
all_vars = tf.trainable_variables()
grads = tf.gradients(total_loss, all_vars)
grads_and_vars = list(zip(grads, all_vars))
return total_loss, new_mems, grads_and_vars
return model_fn
def single_core_graph(is_training, features, mems):
model_fn = get_model_fn()
model_ret = model_fn(
features=features,
labels=None,
mems=mems,
is_training=is_training)
return model_ret
def create_mems_tf(bsz_per_core):
mems = [tf.placeholder(dtype=tf.float32,
shape=[FLAGS.mem_len, bsz_per_core, FLAGS.d_model])
for layer in range(FLAGS.n_layer)]
return mems
def initialize_mems_np(bsz_per_core):
mems_np = [np.zeros(shape=[FLAGS.mem_len, bsz_per_core, FLAGS.d_model],
dtype=np.float32)
for layer in range(FLAGS.n_layer)]
return mems_np
def train(ps_device):
##### Get input function and model function
train_input_fn, record_info_dict = data_utils.get_input_fn(
tfrecord_dir=FLAGS.record_info_dir,
split="train",
bsz_per_host=FLAGS.train_batch_size,
seq_len=FLAGS.seq_len,
reuse_len=FLAGS.reuse_len,
bi_data=FLAGS.bi_data,
num_hosts=1,
num_core_per_host=1, # set to one no matter how many GPUs
perm_size=FLAGS.perm_size,
mask_alpha=FLAGS.mask_alpha,
mask_beta=FLAGS.mask_beta,
uncased=FLAGS.uncased,
num_passes=FLAGS.num_passes,
use_bfloat16=FLAGS.use_bfloat16,
num_predict=FLAGS.num_predict)
# for key, info in record_info_dict.items():
tf.logging.info("num of batches {}".format(record_info_dict["num_batch"]))
##### Create input tensors / placeholders
bsz_per_core = FLAGS.train_batch_size // FLAGS.num_core_per_host
params = {
"batch_size": FLAGS.train_batch_size # the whole batch
}
train_set = train_input_fn(params)
example = train_set.make_one_shot_iterator().get_next()
if FLAGS.num_core_per_host > 1:
examples = [{} for _ in range(FLAGS.num_core_per_host)]
for key in example.keys():
vals = tf.split(example[key], FLAGS.num_core_per_host, 0)
for device_id in range(FLAGS.num_core_per_host):
examples[device_id][key] = vals[device_id]
else:
examples = [example]
##### Create computational graph
tower_mems, tower_losses, tower_new_mems, tower_grads_and_vars = [], [], [], []
for i in range(FLAGS.num_core_per_host):
reuse = True if i > 0 else None
with tf.device(assign_to_gpu(i, ps_device)), \
tf.variable_scope(tf.get_variable_scope(), reuse=reuse):
# The mems for each tower is a dictionary
mems_i = {}
if FLAGS.mem_len:
mems_i["mems"] = create_mems_tf(bsz_per_core)
loss_i, new_mems_i, grads_and_vars_i = single_core_graph(
is_training=True,
features=examples[i],
mems=mems_i)
tower_mems.append(mems_i)
tower_losses.append(loss_i)
tower_new_mems.append(new_mems_i)
tower_grads_and_vars.append(grads_and_vars_i)
## average losses and gradients across towers
if len(tower_losses) > 1:
loss = tf.add_n(tower_losses) / len(tower_losses)
grads_and_vars = average_grads_and_vars(tower_grads_and_vars)
else:
loss = tower_losses[0]
grads_and_vars = tower_grads_and_vars[0]
## get train op
train_op, learning_rate, gnorm = model_utils.get_train_op(FLAGS, None,
grads_and_vars=grads_and_vars)
global_step = tf.train.get_global_step()
##### Training loop
# initialize mems
tower_mems_np = []
for i in range(FLAGS.num_core_per_host):
mems_i_np = {}
for key in tower_mems[i].keys():
mems_i_np[key] = initialize_mems_np(bsz_per_core)
tower_mems_np.append(mems_i_np)
saver = tf.train.Saver()
gpu_options = tf.GPUOptions(allow_growth=True)
model_utils.init_from_checkpoint(FLAGS, global_vars=True)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
gpu_options=gpu_options)) as sess:
sess.run(tf.global_variables_initializer())
fetches = [loss, tower_new_mems, global_step, gnorm, learning_rate, train_op]
total_loss, prev_step = 0., -1
while True:
feed_dict = {}
for i in range(FLAGS.num_core_per_host):
for key in tower_mems_np[i].keys():
for m, m_np in zip(tower_mems[i][key], tower_mems_np[i][key]):
feed_dict[m] = m_np
fetched = sess.run(fetches, feed_dict=feed_dict)
loss_np, tower_mems_np, curr_step = fetched[:3]
total_loss += loss_np
if curr_step > 0 and curr_step % FLAGS.iterations == 0:
curr_loss = total_loss / (curr_step - prev_step)
tf.logging.info("[{}] | gnorm {:.2f} lr {:8.6f} "
"| loss {:.2f} | pplx {:>7.2f}, bpc {:>7.4f}".format(
curr_step, fetched[-3], fetched[-2],
curr_loss, math.exp(curr_loss), curr_loss / math.log(2)))
total_loss, prev_step = 0., curr_step
if curr_step > 0 and curr_step % FLAGS.save_steps == 0:
save_path = os.path.join(FLAGS.model_dir, "model.ckpt")
saver.save(sess, save_path)
tf.logging.info("Model saved in path: {}".format(save_path))
if curr_step >= FLAGS.train_steps:
break
def main(unused_argv):
del unused_argv # Unused
tf.logging.set_verbosity(tf.logging.INFO)
# Get corpus info
FLAGS.n_token = data_utils.VOCAB_SIZE
tf.logging.info("n_token {}".format(FLAGS.n_token))
if not tf.gfile.Exists(FLAGS.model_dir):
tf.gfile.MakeDirs(FLAGS.model_dir)
train("/gpu:0")
if __name__ == "__main__":
tf.app.run()