-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathbcf2.cpp
272 lines (230 loc) · 7.16 KB
/
bcf2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*=============================================================================
Copyright (c) 2018 Joel de Guzman. All rights reserved.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
#include <iostream>
#include <cmath>
#include <array>
#include <type_traits>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <cstdint>
// smallest power of 2 that fits n
template <typename T>
constexpr T smallest_pow2(T n, T m = 1)
{
return (m < n)? smallest_pow2(n, m << 1) : m;
}
std::uint32_t count_bits(std::uint32_t i)
{
// GCC only!!!
return __builtin_popcount(i);
}
std::uint64_t count_bits(std::uint64_t i)
{
// GCC only!!!
return __builtin_popcountll(i);
}
template <typename T = std::uint32_t>
struct bitstream
{
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
static constexpr auto nbits = 8 * sizeof(T);
bitstream(std::size_t size_)
{
size = smallest_pow2(size_);
array_size = size / nbits;
bits.resize(array_size, 0);
}
void clear()
{
std::fill(bits.begin(), bits.end(), 0);
}
void set(std::uint32_t i, bool val)
{
auto mask = 1 << (i % nbits);
auto& ref = bits[i / nbits];
ref ^= (-T(val) ^ ref) & mask;
}
bool get(std::uint32_t i) const
{
auto mask = 1 << (i % nbits);
return (bits[i / nbits] & mask) != 0;
}
template <typename F>
void auto_correlate(std::size_t start_pos, F f)
{
auto mid_array = (array_size / 2) - 1;
auto mid_pos = size / 2;
auto index = start_pos / nbits;
auto shift = start_pos % nbits;
for (auto pos = start_pos; pos != mid_pos; ++pos)
{
auto* p1 = bits.data();
auto* p2 = bits.data() + index;
auto count = 0;
if (shift == 0)
{
for (auto i = 0; i != mid_array; ++i)
count += count_bits(*p1++ ^ *p2++);
}
else
{
auto shift2 = nbits - shift;
for (auto i = 0; i != mid_array; ++i)
{
auto v = *p2++ >> shift;
v |= *p2 << shift2;
count += count_bits(*p1++ ^ v);
}
}
++shift;
if (shift == nbits)
{
shift = 0;
++index;
}
f(pos, count);
}
}
std::vector<T> bits;
std::size_t size;
std::size_t array_size;
};
struct zero_cross
{
bool operator()(float s)
{
if (s < -0.1f)
y = 0;
else if (s > 0.0f)
y = 1;
return y;
}
bool y = 0;
};
struct noise
{
float operator()() const
{
return (float(rand()) / (RAND_MAX / 2)) - 1.0;
}
};
int main ()
{
constexpr auto pi = M_PI;
constexpr auto sps = 44100; // 20000;
constexpr auto min_freq = 50.0;
constexpr auto max_freq = 500.0;
constexpr float freq = 261.626; // 82.41;
// These are in samples
constexpr float period = float(sps) / freq;
constexpr float min_period = float(sps) / max_freq;
constexpr float max_period = float(sps) / min_freq;
////////////////////////////////////////////////////////////////////////////
// Generate a test signal
constexpr float noise_level = 0.0; // Noise level (dB)
constexpr float _1st_level = 0.3; // Fundamental level
constexpr float _2nd_level = 0.4; // Second harmonic level
constexpr float _3rd_level = 0.3; // Third harmonic level
constexpr float offset = 0;
// constexpr float offset = period - 1.3; // Initial offset (some odd number)
std::size_t buff_size = smallest_pow2<std::size_t>(std::ceil(max_period)) * 2;
std::vector<float> signal(buff_size);
noise ns; // noise
for (int i = 0; i < buff_size; i++)
{
auto angle = (i + offset) / period;
signal[i] = noise_level * ns(); // Noise
signal[i] += _1st_level * std::sin(2 * pi * angle); // First harmonic
signal[i] += _2nd_level * std::sin(4 * pi * angle); // Second harmonic
signal[i] += _3rd_level * std::sin(6 * pi * angle); // Third harmonic
}
////////////////////////////////////////////////////////////////////////////
// The bitstream
bitstream<> bin(buff_size);
////////////////////////////////////////////////////////////////////////////
// Zero crossing
zero_cross zc;
for (auto i = 0; i != buff_size; ++i)
bin.set(i, zc(signal[i]));
////////////////////////////////////////////////////////////////////////////
// Binary Auto-correlation
#define PRINTING 0
std::uint32_t max_count = 0;
std::uint32_t min_count = UINT32_MAX;
std::size_t est_index = 0;
std::vector<std::uint32_t> corr(buff_size / 2);
bin.auto_correlate(PRINTING? 0 : min_period,
[&corr, &max_count, &min_count, &est_index](auto pos, auto count)
{
corr[pos] = count;
max_count = std::max<std::uint32_t>(max_count, count);
if (count < min_count)
{
min_count = count;
est_index = pos;
}
}
);
////////////////////////////////////////////////////////////////////////////
// Print the signal, zero crossings and correlations (for graphing)
#if PRINTING
auto mid_pos = buff_size / 2;
for (int i = 0; i < buff_size; i++)
{
if (i < mid_pos)
std::cout << signal[i] << ", " << bin.get(i) << ", " << float(corr[i])/max_count << std::endl;
else
std::cout << signal[i] << ", " << bin.get(i) << std::endl;
}
return 0; // return now
#endif
////////////////////////////////////////////////////////////////////////////
// Handle harmonics
auto sub_threshold = 0.15 * max_count;
int max_div = est_index / min_period;
for (int div = max_div; div != 0; div--)
{
bool all_strong = true;
float mul = 1.0f / div;
for (int k = 1; k != div; k++)
{
int sub_period = k * est_index * mul;
if (corr[sub_period] > sub_threshold)
{
all_strong = false;
break;
}
}
if (all_strong)
{
est_index = est_index * mul;
break;
}
}
////////////////////////////////////////////////////////////////////////////
// Estimate the pitch
// Get the start edge
float prev = 0;
auto start_edge = signal.begin();
for (; *start_edge <= 0.0f; ++start_edge)
prev = *start_edge;
auto dy = *start_edge - prev;
auto dx1 = -prev / dy;
// Get the next edge
auto next_edge = signal.begin() + est_index - 1;
for (; *next_edge <= 0.0f; ++next_edge)
prev = *next_edge;
dy = *next_edge - prev;
auto dx2 = -prev / dy;
float n_samples = (next_edge - start_edge) + (dx2 - dx1);
float est_freq = sps / n_samples;
std::cout << "Actual Frequency: " << freq << " Hz" << std::endl;
std::cout << "Estimated Frequency: " << est_freq << " Hz" << std::endl;
std::cout << "Error: " << 1200.0 * std::log2(est_freq / freq) << " cents" << std::endl;
std::cout << "Periodicity: " << 1.0 - (float(min_count) / max_count) << std::endl;
return 0;
}