-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauxfuncs.py
235 lines (167 loc) · 6.11 KB
/
auxfuncs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python3
#%%---------------------------------------------------------------------------
# IMPORTS
#-----------------------------------------------------------------------------
import numpy as np
import torch
import matplotlib.pyplot as plt
from numba import njit
#%%---------------------------------------------------------------------------
# TORCH
#-----------------------------------------------------------------------------
def fromTensor(x):
if(torch.is_tensor(x)):
return x.data.cpu().numpy()
return x
def currentDevice():
if(torch.cuda.is_available()):
return torch.device('cuda')
elif torch.backends.mps.is_available():
return torch.device('mps')
else:
return torch.device('cpu')
#%%---------------------------------------------------------------------------
# SHOELACE AREA
#-----------------------------------------------------------------------------
#%%
@njit()
def shoelaceAreaF(xys):
assert(2==len(xys.shape))
xs = xys[:,0]
ys = xys[:,1]
x0 = xs[-1]
y0 = ys[-1]
area = 0.0
for i1,x1 in enumerate(xs):
x1 = xs[i1]
y1 = ys[i1]
area += x1*y0-x0*y1
x0 = x1
y0 = y1
return area/2.0
@njit()
def shoelaceAreaG(xys):
assert(2==len(xys.shape))
g = np.zeros_like(xys)
xs = xys[:,0]
ys = xys[:,1]
x0 = xs[-1]
y0 = ys[-1]
nv = xs.shape[0]
i0 = nv-1
#area = 0.0
for i1,x1 in enumerate(xs):
x1 = xs[i1]
y1 = ys[i1]
g[i0,0] -= y1 # da/dx0 = -y1
g[i1,0] += y0 # da/dx1 = y0
g[i0,1] += x1 # da/dy0 = x1
g[i1,1] -= x0 # da/dy1 = -x0
#area += x0*y1-x1*y0
x0 = x1
y0 = y1
i0 = i1
return g/2.0
def shoelaceArea1(xy):
assert(1==len(xy.size()))
ns = xy.size(0)
ids = np.arange(0,ns,2)
x0 = xy[ids]
y0 = xy[ids+1]
x1=torch.cat((x0[-1:],x0[0:-1]))
y1=torch.cat((y0[-1:],y0[0:-1]))
area = torch.sum(y1*x0)-torch.sum(y0*x1)
return area/2.0
def shoelaceArea2(xy):
assert(2==len(xy.size()) and (2 == xy.size(1)))
x0 = xy[:,0]
y0 = xy[:,1]
x1=torch.cat((x0[-1:],x0[0:-1]))
y1=torch.cat((y0[-1:],y0[0:-1]))
area = torch.sum(y1*x0)-torch.sum(y0*x1)
return area/2.0
def batchShoelaceArea(points):
# points is (bs,2*num_points) or (bs,num_points,2)
bs = points.shape[0]
if len(points.shape) == 2:
assert points.shape[-1] % 2 == 0
num_points = points.shape[-1] // 2
points = points.reshape(bs, num_points, 2)
elif len(points.shape) == 3:
assert points.shape[-1] == 2
num_points = points.shape[1]
else:
raise ValueError(f'Wrong shape, got {points.shape} but expected (bs,2*num_points) or (bs,num_points,2)')
# now points is (bs,num_points,2)
points_rot = torch.cat([points[:,-1:], points[:,:-1]], dim=1)
area = (points_rot[:,:,1]*points[:,:,0]).sum(dim=-1) - (points[:,:,1]*points_rot[:,:,0]).sum(dim=-1)
area = area / 2
return area
#%%---------------------------------------------------------------------------
# Affine Transform
#-----------------------------------------------------------------------------
def affTrf(aff,xy):
if(torch.is_tensor(aff)):
assert(1==len(aff.size()) and 6==aff.size(0))
assert(torch.is_tensor(xy) and 2==len(xy.size()) and (2 == xy.size(1)))
A = aff[0:4].view((2,2))
b = aff[4:6]
else:
assert(1==len(aff.shape) and 6==aff.shape[0])
assert(not(torch.is_tensor(xy)) and 2==len(xy.shape) and (2 == xy.shape[1]))
A = aff[0:4].reshape((2,2))
b = aff[4:6]
return xy @ A.T + b
def batchAffTrf(xys,sigA,sigT):
batchL=xys.size(0)
aff = torch.zeros((batchL,6),device=xys.device,dtype=xys.dtype)
aff[:,0]=aff[:,3]=1.0
if(sigA>0.0):
aff[:,0:4] += sigA*torch.randn((batchL,4),device=aff.device)
if(sigT>0.0):
aff[:,4:6] += sigT*torch.randn((batchL,2),device=aff.device)
A = aff[:,0:4].view((-1,2,2))
b = aff[:,4:6]
xys = torch.bmm(xys.view(batchL,-1,2),A)
xys = xys + b.view((batchL,1,-1))
return xys.view((batchL,-1))
#%%---------------------------------------------------------------------------
# Display
#-----------------------------------------------------------------------------
def drawAirfoil(xs,color='-b',label=None):
xs=fromTensor(xs)
xy=xs.reshape((-1,2))
plt.plot(xy[:,0],xy[:,1],color,label=label)
plt.gca().axis('equal')
#%%---------------------------------------------------------------------------
# Data
#-----------------------------------------------------------------------------
def loadWingProfiles(step=None,trainP=True,targetA=None):
xys = np.load(wingDataName(trainP,targetA,step))
if(targetA is None and step is not None):
id1 = range(0,301,step)
id2 = range(301,602,step)
ids = np.hstack((np.array(id1),np.array(id2),np.array(0)))
ns = xys.shape[0]
xys = xys.reshape((ns,602,2))
xys = xys[:,ids,:]
xys = xys.reshape((ns,-1))
return np.asarray(xys,dtype=np.float32)
def saveWingProfiles(xys,step=None,trainP=True,targetA=None):
np.save(wingDataName(trainP,targetA,step),xys)
def wingDataName(trainP,targetA,step):
if(trainP):
bName = 'training'
else:
bName = 'testing'
if(targetA):
fName = 'dat/{}-{}-{}.npy'.format(bName,step,targetA)
else:
fName = 'dat/{}.npy'.format(bName)
return fName
def netwDataName(zdim,n1,n2,n3,targetA=None):
if(targetA is None):
fileName = 'dat/airf-{}-{}-{}-{}'.format(zdim,n1,n2,n3)
else:
fileName = 'dat/airf-{}-{}-{}-{}-{}'.format(zdim,n1,n2,n3,targetA)
return(fileName)