-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbaseline_methods.py
658 lines (449 loc) · 24.4 KB
/
baseline_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import numpy as np
import scipy.stats, scipy.linalg, scipy.spatial.distance
import math
import itertools
from multiprocessing import Pool
from .retrieval_base import ActiveRetrievalBase
from .regression_base import ActiveRegressionBase
class RandomRetrieval(ActiveRetrievalBase):
""" Selects samples at random. """
def fetch_unlabelled(self, k):
candidates = self.get_unseen()
return np.random.choice(candidates, min(k, len(candidates)), replace = False)
class RandomRetrieval_Regression(ActiveRegressionBase):
""" Selects samples at random. """
def fetch_unlabelled(self, k):
candidates = self.get_unseen()
return np.random.choice(candidates, min(k, len(candidates)), replace = False)
class TopscoringSampling(ActiveRetrievalBase):
""" Selects samples with maximum predictive mean. """
def fetch_unlabelled(self, k):
ranking = np.argsort(self.rel_mean)[::-1]
ret = []
for i in ranking:
if (i not in self.relevant_ids) and (i not in self.irrelevant_ids) and (i not in self.unnameable_ids):
ret.append(i)
if len(ret) >= k:
break
return ret
class BorderlineSampling(ActiveRetrievalBase):
""" Selects samples with minimum absolute predictive mean. """
def fetch_unlabelled(self, k):
ranking = np.argsort(np.abs(self.rel_mean))
ret = []
for i in ranking:
if (i not in self.relevant_ids) and (i not in self.irrelevant_ids) and (i not in self.unnameable_ids):
ret.append(i)
if len(ret) >= k:
break
return ret
class BorderlineDiversitySampling(ActiveRetrievalBase):
""" Selects samples with small distance to the decision boundary while maintaining diversity among them w.r.t. their angle.
Reference:
Klaus Brinker.
"Incorporating Diversity in Active Learning with Support Vector Machines."
International Conference on Machine Learning (ICML), 2003.
`alpha` is the linear combination coefficient interpolating between the distance and the diversity criterion,
"""
def __init__(self, data = None, queries = [], length_scale = 0.1, var = 1.0, noise = 1e-6,
alpha = 0.5):
ActiveRetrievalBase.__init__(self, data, queries, length_scale, var, noise)
self.alpha = alpha
def fetch_unlabelled(self, k):
candidates = self.get_unseen()
# Select sample closest to the decision boundary as first sample
min_ind = np.argmin(np.abs(self.rel_mean[candidates]))
ret = [candidates[min_ind]]
# Select more samples by minimizing a trade-off between distance to decision boundary and similarity to already selected samples
for i in range(1, k):
del candidates[min_ind]
if len(candidates) == 0:
break
# Compute cosine similarity of candidates to selected samples in kernel space
angle = self.gp.K_all[np.ix_(candidates, ret)]
angle /= np.sqrt(self.gp.K_all[candidates, candidates])[:,None]
angle /= np.sqrt(self.gp.K_all[ret, ret])[None,:]
diversity = angle.max(axis = -1)
# Select sample with minimum score
scores = self.alpha * np.abs(self.rel_mean[candidates]) + (1.0 - self.alpha) * diversity
min_ind = np.argmin(scores)
ret.append(candidates[min_ind])
return ret
class VarianceSampling(ActiveRetrievalBase):
""" Selects samples with maximum predictive variance.
If `use_correlations` is set to `True`, the covariance to other samples in the selected batch will also
be taken into account by computing the score of a given batch of samples as the sum of their variance
minus the sum of their covariance. Samples will be selected in a greedy fashion, starting with the one
with the highest predictive variance and extending the batch successively.
"""
def __init__(self, data = None, queries = [], length_scale = 0.1, var = 1.0, noise = 1e-6,
use_correlations = False):
ActiveRetrievalBase.__init__(self, data, queries, length_scale, var, noise)
self.use_correlations = use_correlations
def fetch_unlabelled(self, k):
_, rel_var = self.gp.predict_stored(cov_mode = 'diag')
rel_var = rel_var[:len(self.data)]
if self.use_correlations:
ret = [max(range(rel_var.size), key = lambda i: rel_var[i] if (i not in self.relevant_ids) and (i not in self.irrelevant_ids) else 0)]
for l in range(1, k):
candidates = [i for i in range(rel_var.size) if (i not in self.relevant_ids) and (i not in self.irrelevant_ids) and (i not in self.unnameable_ids) and (i not in ret)]
if len(candidates) == 0:
break
covs = self.gp.predict_cov_batch(ret, candidates)
ti, tj = np.tril_indices(covs.shape[1], -1)
scores = np.diagonal(covs, 0, 1, 2).sum(axis = -1) - covs[:,ti,tj].sum(axis = -1)
ret.append(candidates[np.argmax(scores)])
else:
ranking = np.argsort(rel_var)[::-1]
ret = []
for i in ranking:
if (i not in self.relevant_ids) and (i not in self.irrelevant_ids) and (i not in self.unnameable_ids):
ret.append(i)
if len(ret) >= k:
break
return ret
class VarianceSampling_Regression(ActiveRegressionBase):
""" Selects samples with maximum predictive variance.
If `use_correlations` is set to `True`, the covariance to other samples in the selected batch will also
be taken into account by computing the score of a given batch of samples as the sum of their variance
minus the sum of their covariance. Samples will be selected in a greedy fashion, starting with the one
with the highest predictive variance and extending the batch successively.
"""
def __init__(self, data = None, train_init = [], y_init = [], length_scale = 0.1, var = 1.0, noise = 1e-6,
use_correlations = False):
ActiveRegressionBase.__init__(self, data, train_init, y_init, length_scale, var, noise)
self.use_correlations = use_correlations
def fetch_unlabelled(self, k):
_, var = self.gp.predict_stored(cov_mode = 'diag')
if self.use_correlations:
ret = [max(range(var.size), key = lambda i: var[i] if i not in self.labeled_ids else 0)]
for l in range(1, k):
candidates = [i for i in range(var.size) if (i not in self.labeled_ids) and (i not in self.unnameable_ids) and (i not in ret)]
if len(candidates) == 0:
break
covs = self.gp.predict_cov_batch(ret, candidates)
ti, tj = np.tril_indices(covs.shape[1], -1)
scores = np.diagonal(covs, 0, 1, 2).sum(axis = -1) - covs[:,ti,tj].sum(axis = -1)
ret.append(candidates[np.argmax(scores)])
else:
ranking = np.argsort(var)[::-1]
ret = []
for i in ranking:
if (i not in self.labeled_ids) and (i not in self.unnameable_ids):
ret.append(i)
if len(ret) >= k:
break
return ret
class UncertaintySampling(ActiveRetrievalBase):
""" Selects samples with minimum certainty
Certainty is defined as: |mu| / sqrt(sigma^2 + sigma_noise^2)
Reference:
Ashish Kapoor, Kristen Grauman, Raquel Urtasun and Trevor Darrell.
"Active Learning with Gaussian Processes for Object Categorization."
International Conference on Computer Vision (ICCV), 2007.
"""
def fetch_unlabelled(self, k):
mean, variance = self.gp.predict_stored(cov_mode = 'diag')
ranking = np.argsort(np.abs(mean) / np.sqrt(variance + self.gp.noise))
ret = []
for i in ranking:
if (i not in self.relevant_ids) and (i not in self.irrelevant_ids) and (i not in self.unnameable_ids):
ret.append(i)
if len(ret) >= k:
break
return ret
class EntropySampling(ActiveRetrievalBase):
""" Selects batches of samples with maximum entropy.
Reference:
Ksenia Konyushkova, Raphael Sznitman and Pascal Fua.
"Geometry in Active Learning for Binary and Multi-class Image Segmentation."
arXiv:1606.09029v2.
For batch sampling, this implementation uses the joint distribution of the samples in the
batch for computing the batch entropy.
"""
def fetch_unlabelled(self, k):
rel_mean, rel_var = self.gp.predict_stored(cov_mode = 'diag')
rel_mean = rel_mean[:len(self.data)]
rel_var = rel_var[:len(self.data)]
candidates = self.get_unseen()
max_ind = max(range(len(candidates)), key = lambda i: self.__class__.single_entropy(rel_mean[candidates[i]], rel_var[candidates[i]]))
ret = [candidates[max_ind]]
with Pool() as p:
for l in range(1, k):
del candidates[max_ind]
if len(candidates) == 0:
break
covs = self.gp.predict_cov_batch(ret, candidates)
entropies = p.starmap(self.__class__.batch_entropy, [(rel_mean[ret+[candidates[i]]], covs[i]) for i in range(len(candidates))])
max_ind = np.argmax(entropies)
ret.append(candidates[max_ind])
return ret
@staticmethod
def single_entropy(mean, var):
prob_irr = max(1e-8, min(1.0 - 1e-8, scipy.stats.norm.cdf(0, mean, np.sqrt(var))))
return -1 * (prob_irr * np.log(prob_irr) + (1.0 - prob_irr) * np.log(1.0 - prob_irr))
@staticmethod
def batch_entropy(mean, cov):
stdev = np.sqrt(np.diag(cov))
pivot = -mean / stdev
i, j = np.tril_indices(cov.shape[0], -1)
correl = cov[i, j] / (stdev[i] * stdev[j])
entropy = 0.0
for rel in itertools.product([False, True], repeat = len(mean)):
err, pr, info = scipy.stats.mvn.mvndst(pivot, pivot, np.array(rel, dtype = int), correl,
maxpts = len(rel) * 100, abseps = 1e-4, releps = 1e-4)
if pr > 1e-12:
entropy += pr * np.log(pr)
return -1 * entropy
class EntropySampling_Regression(ActiveRegressionBase):
""" Selects batches of samples with maximum entropy.
Reference:
Ksenia Konyushkova, Raphael Sznitman and Pascal Fua.
"Geometry in Active Learning for Binary and Multi-class Image Segmentation."
arXiv:1606.09029v2.
For batch sampling, this implementation uses the joint distribution of the samples in the
batch for computing the batch entropy.
"""
def __init__(self, *args, **kwargs):
ActiveRegressionBase.__init__(self, *args, **kwargs)
self.constant = np.log(2 * np.pi * np.e)
def fetch_unlabelled(self, k):
_, var = self.gp.predict_stored(cov_mode = 'diag')
candidates = self.get_unseen()
max_ind = max(range(len(candidates)), key = lambda i: self.single_entropy(var[candidates[i]]))
ret = [candidates[max_ind]]
for l in range(1, k):
del candidates[max_ind]
if len(candidates) == 0:
break
covs = self.gp.predict_cov_batch(ret, candidates)
max_ind = max(range(len(candidates)), key = lambda i: self.batch_entropy(covs[i]))
ret.append(candidates[max_ind])
return ret
def single_entropy(self, var):
return (self.constant + np.log(max(var, 1e-8))) / 2
def batch_entropy(self, cov):
return (np.linalg.slogdet(cov + np.eye(cov.shape[0]) * 1e-8)[1] + cov.shape[0] * self.constant) / 2
class EMOC(ActiveRetrievalBase):
""" Selects samples with maximum expected model output change (EMOC).
Reference:
Alexander Freytag, Erik Rodner and Joachim Denzler.
"Selecting Influential Examples: Active Learning with Expected Model Output Changes."
European Conference on Computer Vision (ECCV), 2014.
"""
def fetch_unlabelled(self, k):
# Build list of candidate sample indices
candidates = np.array(self.get_unseen())
if len(candidates) < k:
k = len(candidates)
# Compute EMOC scores for all candidates
scores = self.emoc_scores(candidates)
# Return highest-scoring samples
return candidates[np.argsort(scores)[::-1][:k]].tolist()
def emoc_scores(self, ind):
# Compute predictive mean and variance for all samples as length-r vectors
mean, variance = self.gp.predict_stored(ind, cov_mode = 'diag')
# Compute the model change for both possible labels and all candidates as u-by-(r+1) matrices
k_diff = np.hstack((np.dot(self.gp.K_all[np.ix_(ind, self.gp.ind)], self.gp.K_inv), np.zeros((len(ind), 1)) - 1))
denom = variance + self.gp.noise
alpha_diff_pos = (( 1 - mean) / denom)[:,None] * k_diff
alpha_diff_neg = ((-1 - mean) / denom)[:,None] * k_diff
# Compute MOC (model output change) for all candidates and both possible labels as u-by-2 matrix
moc = np.array([
np.abs(np.dot(np.vstack((ad_pos, ad_neg)), self.gp.K_all[np.r_[self.gp.ind, [i]], :])).mean(axis = -1) \
for i, ad_pos, ad_neg in zip(ind, alpha_diff_pos, alpha_diff_neg)
])
# Compute EMOC (expected model output change) for all candidates as length-u vectors
prob_neg = scipy.stats.norm.cdf(0, mean, np.sqrt(variance))
prob_pos = 1 - prob_neg
return prob_pos * moc[:,0] + prob_neg * moc[:,1]
class EMOC_Regression(ActiveRegressionBase):
""" Selects samples with maximum expected model output change (EMOC). """
def __init__(self, data = None, train_init = [], y_init = [], length_scale = 0.1, var = 1.0, noise = 1e-6,
norm = 1):
ActiveRegressionBase.__init__(self, data, train_init, y_init, length_scale, var, noise)
self.norm = norm
def fetch_unlabelled(self, k):
# Build list of candidate sample indices
candidates = np.array(self.get_unseen())
if len(candidates) < k:
k = len(candidates)
# Compute EMOC scores for all candidates
scores = self.emoc_scores(candidates)
# Return highest-scoring samples
return candidates[np.argsort(scores)[::-1][:k]].tolist()
def emoc_scores(self, ind):
emocScores = np.empty([len(ind)])
muTilde = np.zeros([len(ind)])
k = self.gp.K_all[np.ix_(self.gp.ind, ind)]
_, sigmaF = self.gp.predict_stored(ind, cov_mode = 'diag')
moments = self.gaussianAbsoluteMoment(muTilde, sigmaF)
term1 = 1.0 / (sigmaF + self.gp.noise)
preCalcMult = np.dot(np.linalg.solve(self.gp.K, k).T, self.gp.K_all[np.ix_(self.gp.ind, ind)])
for idx in range(len(ind)):
vAll = term1[idx] * (preCalcMult[idx,:] - self.gp.K_all[ind[idx],ind])
emocScores[idx] = np.mean(np.power(np.abs(vAll), self.norm))
return emocScores * moments
def gaussianAbsoluteMoment(self, muTilde, predVar):
f11 = scipy.special.hyp1f1(-0.5*self.norm, 0.5, -0.5*np.divide(muTilde**2,predVar))
prefactors = ((2 * predVar**2)**(self.norm/2.0) * math.gamma((1 + self.norm)/2.0)) / np.sqrt(np.pi)
return np.multiply(prefactors,f11)
class SUD(ActiveRetrievalBase):
""" Sampling by Uncertainty and Density.
Reference:
Jingbo Zhu, Huizhen Wang, Tianshun Yao, and Benjamin K Tsou.
"Active Learning with Sampling by Uncertainty and Density for Word Sense Disambiguation and Text Classification."
International Conference on Computational Linguistics (COLING), 2008, pp. 1137-1144.
The parameter `K` specifies the number of nearest neighbours to take into account for density computation.
"""
def __init__(self, data = None, queries = [], length_scale = 0.1, var = 1.0, noise = 1e-6,
K = 20):
ActiveRetrievalBase.__init__(self, data, queries, length_scale, var, noise)
self.K = K
def fetch_unlabelled(self, k):
candidates = self.get_unseen()
# Compute uncertainty (entropy) for all candidates
rel_mean, rel_var = self.gp.predict_stored(candidates, cov_mode = 'diag')
irr_prob = np.maximum(1e-8, np.minimum(1.0 - 1e-8, scipy.stats.norm.cdf(0, rel_mean, np.sqrt(rel_var + self.gp.noise))))
rel_prob = 1.0 - irr_prob
unc = -1 * (rel_prob * np.log(rel_prob) + irr_prob * np.log(irr_prob))
# Compute density for all candidates
densities = (np.partition(scipy.spatial.distance.cdist(self.data[candidates], self.data, 'cosine'), self.K, axis = -1)[:,:self.K+1].sum(axis = -1) - 1.0) / self.K
# Select samples with maximum product of uncertainty and density
max_ind = np.argsort(unc * densities)[::-1]
return [candidates[i] for i in max_ind[:k]]
class RBMAL(ActiveRetrievalBase):
""" Ranked Batch-Mode Active Learning.
Reference:
Thiago N. C. Cardoso, Rodrigo M. Silva, Sérgio Canuto, Mirella M. Moro, and Marcos A Gonçalves.
"Ranked batch-mode active learning."
Information Sciences 379, 2017, pp. 313-337.
"""
def fetch_unlabelled(self, k):
# Compute relevance probabilities and uncertainties for all unlabeled samples
rel_mean, rel_var = self.gp.predict_stored(cov_mode = 'diag')
irr_prob = scipy.stats.norm.cdf(0, rel_mean, np.sqrt(rel_var + self.gp.noise))
unc = 1.0 - np.abs(1.0 - 2 * irr_prob)
# Greedily select samples maximizing a trade-off between uncertainty and similarity to already selected and training samples
train_ids = list(self.relevant_ids | self.irrelevant_ids)
candidates = self.get_unseen()
ret = []
for l in range(1, k):
# Compute similarity to already selected samples
dist = scipy.spatial.distance.cdist(self.data[candidates], self.data[train_ids], 'cosine').min(axis = -1)
# Compute combined score
alpha = len(candidates) / (len(candidates) + len(train_ids) + len(ret))
scores = alpha * dist + (1 - alpha) * unc[candidates]
# Select sample with maximum score
max_ind = np.argmax(scores)
ret.append(candidates[max_ind])
del candidates[max_ind]
if len(candidates) == 0:
break
return ret
class TCAL(ActiveRetrievalBase):
""" Triple Criteria Active Learning.
Reference:
Begüm Demir and Lorenzo Bruzzone.
"A Novel Active Learning Method in Relevance Feedback for Content-Based Remote Sensing Image Retrieval"
IEEE Transactions on Geoscience and Remote Sensing 53.5, 2015, pp. 2323-2333.
This algorithm consist of two steps:
1. Select the `m` samples closest to the decision boundary.
2. Divide them into `k` clusters and from eache cluster, select the sample with the minimum average
distance to all other samples in the cluster.
The parameter `unc_factor` implicitly controls `m` by `m = unc_factor * k`.
"""
def __init__(self, data = None, queries = [], length_scale = 0.1, var = 1.0, noise = 1e-6,
unc_factor = 4):
ActiveRetrievalBase.__init__(self, data, queries, length_scale, var, noise)
self.unc_factor = unc_factor
def fetch_unlabelled(self, k):
candidates = np.array(self.get_unseen())
# Select sample closest to the decision
m = self.unc_factor * k
uncertain_ind = np.argpartition(np.abs(self.rel_mean[candidates]), m - 1)[:m]
unc = candidates[uncertain_ind]
# Divide them into k clusters
from .external.kernel_kmeans import KernelKMeans
succ = False
while not succ:
try:
km = KernelKMeans(k, kernel = 'precomputed')
km.fit(self.gp.K_all[np.ix_(unc, unc)])
succ = True
except ValueError:
k -= 1
if k == 0:
raise
# Select the sample with the highest density from each cluster
ret = []
for i in range(k):
cluster_ind = unc[km.labels_ == i]
K_cluster = self.gp.K_all[np.ix_(cluster_ind, cluster_ind)]
d_cluster = np.diag(K_cluster)
densities = np.mean(d_cluster[:,None] + d_cluster[None,:] - 2 * K_cluster, axis = -1)
ret.append(cluster_ind[np.argmin(densities)])
return ret
class USDM(ActiveRetrievalBase):
""" Uncertainty Sampling with Diversity Maximization.
Reference:
Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann.
"Multi-Class Active Learning by Uncertainty Sampling with Diversity Maximization."
International Journal on Computer Vision, 2015, pp. 113-127.
This is a translation of the MATLAB reference code provided by Xiaojun Chang at:
http://www.cs.cmu.edu/~uqxchan1/codes/AL_semi_fast1.m
"""
def __init__(self, data = None, queries = [], length_scale = 0.1, var = 1.0, noise = 1e-6,
knn = 5, r = 1.0, max_iter = 100, tol = 1e-6):
self.knn = knn
self.r = r
self.max_iter = max_iter
self.tol = tol
ActiveRetrievalBase.__init__(self, data, queries, length_scale, var, noise)
def fit(self, data, queries = []):
ActiveRetrievalBase.fit(self, data, queries)
if self.gp is not None:
# Construct neighborhood matrix
self.A = np.zeros_like(self.gp.K_all)
neighbours = np.argpartition(np.diag(np.diag(self.gp.K_all)) - self.gp.K_all, self.knn, axis = -1)[:,:self.knn]
row_ind = np.tile(np.arange(self.A.shape[0])[:,None], (1, self.knn))
self.A[row_ind, neighbours] = 1
self.A += 1e-6
self.A = np.diag(self.A.sum(axis = -1)) - self.A
def fetch_unlabelled(self, k):
labeled_ind = np.array(list(self.relevant_ids | self.irrelevant_ids))
if len(self.queries) > 0:
labeled_ind = np.concatenate((labeled_ind, np.arange(len(self.data), len(self.data) + len(self.queries))))
unlabeled_ind = np.setdiff1d(np.arange(len(self.data)), np.concatenate([labeled_ind, list(self.unnameable_ids)]))
# Compute class probabilities and negated entropy
y = np.array([1. if i in self.relevant_ids else 0. for i in labeled_ind])
prob = np.maximum(1e-8, np.minimum(1.0 - 1e-8, np.linalg.solve(-self.A[np.ix_(unlabeled_ind, unlabeled_ind)], np.dot(self.A[np.ix_(unlabeled_ind, labeled_ind)], y))))
b = (self.r * (prob * np.log(prob) + (1.0 - prob) * np.log(1.0 - prob))) / np.log(0.5)
# Compute ranking scores
f = self._alm(self.gp.K_all[np.ix_(unlabeled_ind, unlabeled_ind)], b, k)
return unlabeled_ind[np.argpartition(-f, k - 1)[:k]]
def _alm(self, K, b, k):
n = len(b)
mu = 1e-6
rho = 1.1
f = np.ones(n) / n
v = f.copy()
lambda1 = 0.0
lambda2 = np.zeros(n)
obj = None
for it in range(self.max_iter):
A = K.copy()
A += mu
A[np.arange(A.shape[0]),np.arange(A.shape[0])] += mu
e = mu * (v + np.ones(n)) - (lambda2 + lambda1 * np.ones(n)) - b
f = np.linalg.solve(A, e)
v = f + lambda2 / mu
v[v < 0] = 0
lambda1 += mu * (f.sum() - k)
lambda2 += mu * (f - v)
mu *= rho
obj_prev = obj
obj = np.dot(f, np.dot(K, f)) / 2 + np.dot(f, b)
if (obj_prev is not None) and (abs(obj_prev - obj) < self.tol):
break
return f