Skip to content

Latest commit

 

History

History
72 lines (37 loc) · 6.44 KB

File metadata and controls

72 lines (37 loc) · 6.44 KB

Merkle 树结构

[toc]

默克尔树(又叫哈希树)是一种典型的二叉树结构,由一个根节点、一组中间节点和一组叶节点组成。默克尔树最早由 Merkle Ralf 在 1980 年提出,曾广泛用于文件系统和 P2P 系统中。(比如Git用到了默克尔树)🖱️

其主要特点为:

  • 最下面的叶节点包含存储数据或其哈希值;
  • 非叶子节点(包括中间节点和根节点)都是它的两个孩子节点内容的哈希值。

进一步地,默克尔树可以推广到多叉树的情形,此时非叶子节点的内容为它所有的孩子节点的内容的哈希值。

默克尔树逐层记录哈希值的特点,让它具有了一些独特的性质。例如,底层数据的任何变动,都会传递到其父节点,一层层沿着路径一直到树根。这意味树根的值实际上代表了对底层所有数据的“数字摘要”。

目前,默克尔树的典型应用场景包括如下几种。

证明某个集合中存在或不存在某个元素

通过构建集合的默克尔树,并提供该元素各级兄弟节点中的 Hash 值,可以不暴露集合完整内容而证明某元素存在。

另外,对于可以进行排序的集合,可以将不存在元素的位置用空值代替,以此构建稀疏默克尔树(Sparse Merkle Tree)。该结构可以证明某个集合中不包括指定元素。

快速比较大量数据

对每组数据排序后构建默克尔树结构。当两个默克尔树根相同时,则意味着所代表的两组数据必然相同。否则,必然不同。

由于 Hash 计算的过程可以十分快速,预处理可以在短时间内完成。利用默克尔树结构能带来巨大的比较性能优势。

快速定位修改

以下图为例,基于数据 D0……D3 构造默克尔树,如果 D1 中数据被修改,会影响到 N1,N4 和 Root。

img

Merkle 树示例

因此,一旦发现某个节点如 Root 的数值发生变化,沿着 Root --> N4 --> N1,最多通过 O(lgN) 时间即可快速定位到实际发生改变的数据块 D1。

零知识证明(维基百科)

仍以上图为例,如何向他人证明拥有某个数据 D0 而不暴露其它信息。挑战者提供随机数据 D1,D2 和 D3,或由证明人生成(需要加入特定信息避免被人复用证明过程)。

证明人构造如图所示的默克尔树,公布 N1,N5,Root。验证者自行计算 Root 值,验证是否跟提供值一致,即可很容易检测 D0 存在。整个过程中验证者无法获知与 D0 相关的额外信息。

密码学中,零知识证明(英语:zero-knowledge proof)或零知识协议(zero-knowledge protocol)是一方(证明者)向另一方(检验者)证明某命题的方法,特点是过程中除“该命题为真”之事外,不泄露任何资讯。因此,可理解成“零泄密证明”。[1]例如,欲向人证明自己拥有某情报,则直接公开该情报即可,但如此则会将该细节亦一并泄露;零知识证明的精粹在于,如何证明自己拥有该情报而不必透露情报内容。这也是零知识证明的难点。[2]

若该命题的证明,需要知悉某秘密方能作出,则检验者单凭目睹证明,而未获悉该秘密,仍无法向第三方证明该命题(即单单转述不足以证明)。待证的命题中,必定包含证明者宣称自己知道该秘密,但过程中不能传达该秘密本身。否则,协议完结时,已给予检验者有关命题的额外的资讯。此类“知识的零知识证明”是零知识证明的特例,其中待证命题仅有“证明者知道某事”。

交互式零知识证明中,需要各方互动,靠通讯过程证明某方具备某知识,而另一方检验该证明是否成立。[2]

也有某种非交互式零知识证明(英语:non-interactive zero-knowledge proof)[3][4],但证明之所以成立,依赖计算假设(典型假设是理想的密码杂凑函数)。

零知识证明要具备下列三种性质:

  • 完备(complete)

    若所要证之事为真,则诚实(意即依协议行事)的证明者能说服诚实验证者。

  • 健全(sound)

    若命题为假,则作弊证明者仅得极小机会能说服诚实验证者该事为真。

  • 零知识(zero-knowledge)

    若命题为真,则验证者除此之外,过程中没有得悉任何其他资讯。换言之,仅知命题为真(而不知秘密本身)已足以“想像”出一个交互的情境,其中证明者的确知道该秘密。此性质能严格定义为:每个验证者皆有相应的模拟器,输入欲证事实时,无需求助于证明者,已可输出一套通讯誊本,看似诚实验证者与证明者的通讯记录。

前两种性质,更广义的交互式证明系统亦应具备。第三种性质使该交互证明称为零知识。

零知识证明不算数学证明,因为尚允许有很少(但非零)概率,令作弊证明者能向验证者“证明”假命题。该概率称为可靠度误差(soundness error)。换言之,零知识证明是概率“证明”,而非决定性。不过,也有技巧将可靠度误差压到忽略不计。

零知识的严格定义,需要抽象计算模型,如常见的图灵机