-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·75 lines (54 loc) · 2.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import tensorflow as tf
import numpy as np
from tensorflow import keras
import os
import cv2
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential, save_model, load_model
train = ImageDataGenerator(rescale=1/255)
test = ImageDataGenerator(rescale=1/255)
checkpoint_path = "k3/"
# Create a callback that saves the model's weights
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=False,
verbose=1)
train_dataset = train.flow_from_directory("data/train/",
target_size=(150,150),
batch_size = 32,
class_mode = 'binary')
test_dataset = test.flow_from_directory("data/test/",
target_size=(150,150),
batch_size =32,
class_mode = 'binary')
model = keras.Sequential()
# Convolutional layer and maxpool layer 1
model.add(keras.layers.Conv2D(32,(3,3),activation='relu',input_shape=(150,150,3)))
model.add(keras.layers.MaxPool2D(2,2))
# Convolutional layer and maxpool layer 2
model.add(keras.layers.Conv2D(64,(3,3),activation='relu'))
model.add(keras.layers.MaxPool2D(2,2))
# Convolutional layer and maxpool layer 3
model.add(keras.layers.Conv2D(128,(3,3),activation='relu'))
model.add(keras.layers.MaxPool2D(2,2))
# Convolutional layer and maxpool layer 4
model.add(keras.layers.Conv2D(128,(3,3),activation='relu'))
model.add(keras.layers.MaxPool2D(2,2))
model.add(keras.layers.Conv2D(256,(3,3),activation='relu'))
model.add(keras.layers.MaxPool2D(2,2))
# This layer flattens the resulting image array to 1D array
model.add(keras.layers.Flatten())
# Hidden layer with 512 neurons and Rectified Linear Unit activation function
model.add(keras.layers.Dense(512,activation='relu'))
# Output layer with single neuron which gives 0 for Cat or 1 for Dog
#Here we use sigmoid activation function which makes our model output to lie between 0 and 1
model.add(keras.layers.Dense(1,activation='sigmoid'))
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
model.fit_generator(train_dataset,
steps_per_epoch = 250,
epochs = 15,
validation_data = test_dataset,
callbacks=[cp_callback]
)
save_model(model, "models/")