-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_nadirmaps.py
757 lines (537 loc) · 29.2 KB
/
generate_nadirmaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
import argparse
import os
import json
from tqdm import tqdm
import numpy as np
import torch.utils.data
from PIL import Image, ImageDraw
from shapely.geometry import Polygon
import cv2
##from nadir_floorplan_creator import NadirTransformsCreator
###FIXME
##from data_preprocess.common_utils import export_density
##from data_preprocess.stru3d.stru3d_utils import normalize_annotations, parse_floor_plan_polys, generate_coco_dict
##from datasets import poly_data
###NEW
from nadirshape.nadirshapenet import NadirShapeNet, load_trained_model
from nadirshape.misc.d2l import D2L
import matplotlib.pyplot as plt
######adapted from RoomFormer##############################################################
###########################################################################################
invalid_scenes_ids = [76, 183, 335, 491, 663, 681, 703, 728, 865, 936, 985, 986, 1009, 1104, 1155, 1221, 1282,
1365, 1378, 1635, 1745, 1772, 1774, 1816, 1866, 2037, 2076, 2274, 2334, 2357, 2580, 2665,
2706, 2713, 2771, 2868, 3156, 3192, 3198, 3261, 3271, 3276, 3296, 3342, 3387, 3398, 3466, 3496]
type2id = {'living room': 0, 'kitchen': 1, 'bedroom': 2, 'bathroom': 3, 'balcony': 4, 'corridor': 5,
'dining room': 6, 'study': 7, 'studio': 8, 'store room': 9, 'garden': 10, 'laundry room': 11,
'office': 12, 'basement': 13, 'garage': 14, 'undefined': 15, 'door': 16, 'window': 17}
def normalize_point(point, normalization_dict):
min_coords = normalization_dict["min_coords"]
max_coords = normalization_dict["max_coords"]
image_res = normalization_dict["image_res"]
##print('points',min_coords, max_coords)
point_2d = \
np.round(
(point[:2] - min_coords[:2]) / (max_coords[:2] - min_coords[:2]) * image_res)
point_2d = np.minimum(np.maximum(point_2d, np.zeros_like(image_res)),
image_res - 1)
point[:2] = point_2d.tolist()
return point
def normalize_annotations(scene_path, normalization_dict, json_name="annotation_3dm.json"):
annotation_path = os.path.join(scene_path, json_name)
##print('annotation_path',annotation_path)
with open(annotation_path, "r") as f:
annotation_json = json.load(f)
for line in annotation_json["lines"]:
point = line["point"]
point = normalize_point(point, normalization_dict)
line["point"] = point
for junction in annotation_json["junctions"]:
point = junction["coordinate"]
point = normalize_point(point, normalization_dict)
junction["coordinate"] = point
return annotation_json
def parse_floor_plan_polys(annos):
planes = []
for semantic in annos['semantics']:
for planeID in semantic['planeID']:
if annos['planes'][planeID]['type'] == 'floor':
##print('parse_floor_plan_polys',semantic['type'],annos['planes'][planeID]['type'])
planes.append({'planeID': planeID, 'type': semantic['type']})
if semantic['type'] == 'outwall':
outerwall_planes = semantic['planeID']
# extract hole vertices
lines_holes = []
for semantic in annos['semantics']:
if semantic['type'] in ['window', 'door']:
#
for planeID in semantic['planeID']:
lines_holes.extend(np.where(np.array(annos['planeLineMatrix'][planeID]))[0].tolist())
lines_holes = np.unique(lines_holes)
# junctions on the floor
junctions = np.array([junc['coordinate'] for junc in annos['junctions']])
junction_floor = np.where(np.isclose(junctions[:, -1], 0))[0]
# construct each polygon
polygons = []
for plane in planes:
##print('debug str3d_utils',plane['type'])####NB. label is undefined.....
lineIDs = np.where(np.array(annos['planeLineMatrix'][plane['planeID']]))[0].tolist()
junction_pairs = [np.where(np.array(annos['lineJunctionMatrix'][lineID]))[0].tolist() for lineID in lineIDs]
polygon = convert_lines_to_vertices(junction_pairs)
polygons.append([polygon[0], plane['type']])
return polygons
def convert_lines_to_vertices(lines):
"""
convert line representation to polygon vertices
"""
polygons = []
lines = np.array(lines)
polygon = None
while len(lines) != 0:
if polygon is None:
polygon = lines[0].tolist()
lines = np.delete(lines, 0, 0)
lineID, juncID = np.where(lines == polygon[-1])
vertex = lines[lineID[0], 1 - juncID[0]]
lines = np.delete(lines, lineID, 0)
if vertex in polygon:
polygons.append(polygon)
polygon = None
else:
polygon.append(vertex)
return polygons
def generate_coco_dict(annos, polygons, curr_instance_id, curr_img_id, ignore_types, filter_openings=True):
junctions = np.array([junc['coordinate'][:2] for junc in annos['junctions']])
coco_annotation_dict_list = []
for poly_ind, (polygon, poly_type) in enumerate(polygons):
if poly_type in ignore_types:
continue
polygon = junctions[np.array(polygon)]
poly_shapely = Polygon(polygon)
area = poly_shapely.area
##print('poly_shapely area', area)
# assert area > 10
# if area < 100:
if poly_type not in ['door', 'window'] and area < 100:
continue
if poly_type in ['door', 'window'] and area < 10:
continue
rectangle_shapely = poly_shapely.envelope
### here we convert door/window annotation into a single line
if poly_type in ['door', 'window']:
assert polygon.shape[0] == 4
midp_1 = (polygon[0] + polygon[1])/2
midp_2 = (polygon[1] + polygon[2])/2
midp_3 = (polygon[2] + polygon[3])/2
midp_4 = (polygon[3] + polygon[0])/2
dist_1_3 = np.square(midp_1 -midp_3).sum()
dist_2_4 = np.square(midp_2 -midp_4).sum()
if dist_1_3 > dist_2_4:
polygon = np.row_stack([midp_1, midp_3])
else:
polygon = np.row_stack([midp_2, midp_4])
coco_seg_poly = []
poly_sorted = resort_corners(polygon)
for p in poly_sorted:
coco_seg_poly += list(p)
# Slightly wider bounding box
bound_pad = 2
bb_x, bb_y = rectangle_shapely.exterior.xy
bb_x = np.unique(bb_x)
bb_y = np.unique(bb_y)
bb_x_min = np.maximum(np.min(bb_x) - bound_pad, 0)
bb_y_min = np.maximum(np.min(bb_y) - bound_pad, 0)
bb_x_max = np.minimum(np.max(bb_x) + bound_pad, 256 - 1)
bb_y_max = np.minimum(np.max(bb_y) + bound_pad, 256 - 1)
bb_width = (bb_x_max - bb_x_min)
bb_height = (bb_y_max - bb_y_min)
##print('coco bbox',bb_width,bb_height)
coco_bb = [bb_x_min, bb_y_min, bb_width, bb_height]
polygon_ratio = bb_width / bb_height
##print('polygon ratio', bb_width / bb_height)
coco_annotation_dict = {
"segmentation": [coco_seg_poly],
"area": area,
"iscrowd": 0,
"image_id": curr_img_id,
"bbox": coco_bb,
"category_id": type2id[poly_type],
"id": curr_instance_id}
if( (polygon_ratio < 60 or polygon_ratio > 0.01) or not filter_openings):
coco_annotation_dict_list.append(coco_annotation_dict)
curr_instance_id += 1
return coco_annotation_dict_list
def is_clockwise(points):
# points is a list of 2d points.
assert len(points) > 0
s = 0.0
for p1, p2 in zip(points, points[1:] + [points[0]]):
s += (p2[0] - p1[0]) * (p2[1] + p1[1])
return s > 0.0
def resort_corners(corners):
# re-find the starting point and sort corners clockwisely
x_y_square_sum = corners[:,0]**2 + corners[:,1]**2
start_corner_idx = np.argmin(x_y_square_sum)
corners_sorted = np.concatenate([corners[start_corner_idx:], corners[:start_corner_idx]])
## sort points clockwise
if not is_clockwise(corners_sorted[:,:2].tolist()):
corners_sorted[1:] = np.flip(corners_sorted[1:], 0)
return corners
def export_density(density_map, out_folder, scene_id):
density_path = os.path.join(out_folder, scene_id+'.png')
density_uint8 = (density_map * 255).astype(np.uint8)
cv2.imwrite(density_path, density_uint8)
##########################################################################################
##########################################################################################
class NadirTransformsCreator():
###
def __init__(self, path, net, d2l, device = 'cpu', encode_heightmap = False, data_type = 's3d', room_type = "full"):
self.path = path
self.net = net
self.d2l = d2l
self.data_type = data_type
#####input image is a full-cluttered image
print('NadirTransformsCreator data type', self.data_type)
if(self.data_type == 'zind'):
####NB. only full is available
self.camera_h = 1700.0 ##default##mm - ONLY to restore metric scale for zind
self.metric_scale = self.camera_h #####default
self.scale_zind_annotations(scene_path = self.path, metric_scale = self.metric_scale) #####override with metrically scaled annotations
sections = [p for p in os.listdir(os.path.join(path, "2D_rendering"))]
self.rgb_paths = [os.path.join(*[path, "2D_rendering", p, "panorama", room_type, "rgb_rawlight.png"]) for p in sections]
##self.rgb_paths = [os.path.join(*[path, "2D_rendering", p, "panorama", "full", "rgb_coldlight.png"]) for p in sections]
self.camera_paths = [os.path.join(*[path, "2D_rendering", p, "panorama", "camera_xyz.txt"]) for p in sections]
self.max_min_path = os.path.join(path, "metric_max_min.json")
self.device = device
self.point_cloud = None
self.encode_heightmap = encode_heightmap
self.camera_centers = self.read_camera_center()#####NB. doing it first
def scale_zind_annotations(self, scene_path, metric_scale, file_in="annotation_3d.json", file_out="annotation_3dm.json"):
annotation_path = os.path.join(scene_path, file_in)
annotation_path_metric = os.path.join(scene_path, file_out)
##print('annotation_path',annotation_path)
with open(annotation_path, "r") as f:
annotation_json = json.load(f)
for line in annotation_json["lines"]:
point = line["point"]
point = metric_scale * np.asarray(point).astype(float)##normalize_point(point, normalization_dict)
line["point"] = point.tolist()
for junction in annotation_json["junctions"]:
point = junction["coordinate"]
point = metric_scale * np.asarray(point).astype(float)##normalize_point(point, normalization_dict)
junction["coordinate"] = point.tolist()
with open(annotation_path_metric, 'w') as f:
json.dump(annotation_json, f)
def read_camera_center(self):
camera_centers = []
for i in range(len(self.camera_paths)):
if(self.data_type == 's3d'):
with open(self.camera_paths[i], 'r') as f:
line = f.readline()
center = list(map(float, line.strip().split(" ")))
camera_centers.append(np.asarray([center[0], center[1], center[2]]))
else:
##print('DEBUG read_camera_center', self.camera_paths[i])
with open(self.camera_paths[i], 'r') as f:
line1 = f.readline()
c0 = float(line1)#*self.camera_h
line2 = f.readline()
c1 = float(line2)#*self.camera_h
line3 = f.readline()
c2 = float(line3)#*self.camera_h
##center = list(map(float, line.strip().split(" ")))
camera_centers.append(np.asarray([c0, c1, c2]))
return camera_centers
def generate_floorplan_map(self, width=2048, height=2048, out_w = 256, out_h = 256, force_camera_h = True, get_normalization = False):####NB. scale to 256 for comaptibility with roomformer
image_res = np.array((out_w, out_h))##########NB. output pixel dims
local_center = torch.zeros(1,3).to(self.device)
nadir_map = []
# Getting rooms
for i in range(len(self.rgb_paths)):
rgb_img = Image.open(self.rgb_paths[i])
if(self.data_type == 'zind'):
rgb_img = rgb_img.resize((1024,512), Image.BICUBIC)
img = np.array(rgb_img, np.float32)[..., :3] / 255.
x_img = torch.FloatTensor(img.transpose([2, 0, 1])).unsqueeze(0)###as batch element
depth, transform = self.net(x_img.to(self.device))
mask_pred = self.get_segmentation_masks(transform)
nadir_mask_pred = mask_pred[:,:1]##
# plt.figure(i)
# plt.title('pred mask'+str(i))
# plt.imshow(nadir_mask_pred.cpu().squeeze(1).squeeze(0))
####NEW
if(self.encode_heightmap):
heightmap = self.room_heightmap(depth.unsqueeze(1), nadir_mask_pred)
#print('room heightmap', heightmap.shape)
#plt.figure(i+3)
#plt.title('ceiling heightmap'+str(i))
#plt.imshow(heightmap)
###read camera center
if(self.data_type == 'zind'):
rc = (self.camera_centers[i]*self.camera_h) / 1000.0 ###to meters
else:
rc = self.camera_centers[i] / 1000.0 ###to meters
rc = torch.from_numpy(rc).unsqueeze(0).to(self.device)
### move to local center
if(i == 0):
local_center = rc
xy_trans = rc - local_center
p_max, p_min = self.d2l.max_min_depth(depth)
nm = torch.zeros(1, 1, height, width)
z_dist = p_min
if(force_camera_h):
z_dist = rc[:,2]
###encoding room-wise
nadir_mask_pred *= (10*(i+1))#####cam code
if(self.encode_heightmap):
self.d2l.insert_local_transform(heightmap.unsqueeze(0).unsqueeze(0), nm, z_dist, xy_trans)
else:
self.d2l.insert_local_transform(nadir_mask_pred, nm, z_dist, xy_trans)
nadir_map.append(nm)
nadir_map = torch.cat(nadir_map, dim=1)
nadir_map,_ = torch.max(nadir_map,dim=1)####flattened to the same map
#####convert annotations to montefloor-roomformer format
uv = (torch.nonzero(nadir_map.squeeze(0).squeeze(0))).numpy()#### (N,2)
max_coords = np.max(uv, axis=0)
min_coords = np.min(uv, axis=0)
max_m_min = max_coords - min_coords
####NB. store bbox
max_coords2 = max_coords[np.newaxis,np.newaxis, :]
min_coords2 = min_coords[np.newaxis,np.newaxis, :]
uv_max_min = np.concatenate((max_coords2, min_coords2), axis=0)
###############################################
max_coords = (max_coords + 0.1 * max_m_min).astype(np.int32)###adding border
min_coords = (min_coords - 0.1 * max_m_min).astype(np.int32)###adding border
###crop and scale density map
np_crop = nadir_map.cpu().squeeze(1).squeeze(0).numpy()
w_crop = max_coords[0]-min_coords[0]
h_crop = max_coords[1]-min_coords[1]
np_crop = np_crop[min_coords[0]:min_coords[0]+w_crop,min_coords[1]:min_coords[1]+h_crop]
np_crop = np.asarray(self.scale(np.flipud(np_crop), out_w, out_h), np.float32)#####convert to montefloor-roomformer format
# plt.figure(111)
# plt.title('transform map')
# plt.imshow(nadir_map.cpu().squeeze(1).squeeze(0))
# plt.figure(112)
# plt.title('floor map')
# plt.imshow(np_crop)
# plt.show()
result = []
result.append(np_crop)
if(get_normalization):
normalization_dict = {}
####convert nadir coords to metric
##print('DEBUG saving metric infor: uv_max_min',uv_max_min, 'ceil floor dist',p_max, p_min, 'footprint w', width)
max_min = self.d2l.nadir2xy(uv_max_min, width, z_dist)
max_min = max_min.squeeze(1)####(2,2)
###NB. flip max with min
metric_min_coords = np.array([max_min[0,0],max_min[1,1],0.0])+local_center.squeeze(0).cpu().numpy()
metric_max_coords = np.array([max_min[1,0],max_min[0,1],0.0])+local_center.squeeze(0).cpu().numpy()
#
max_m_min = metric_max_coords - metric_min_coords
metric_max_coords = metric_max_coords + 0.1 * max_m_min###adding border
metric_min_coords = metric_min_coords - 0.1 * max_m_min###adding border
normalization_dict["min_coords"] = metric_min_coords * 1000.0 ###to mm
normalization_dict["max_coords"] = metric_max_coords * 1000.0 ###to mm
normalization_dict["image_res"] = image_res
normalization_dict["map_res"] = [width,height]
normalization_dict["heights"] = [p_max.detach().cpu().numpy().item(), p_min.detach().cpu().numpy().item()]
result.append(normalization_dict)
return result
def get_segmentation_masks(self, seg_pred):
soft_sem = torch.softmax(seg_pred, dim = 1) #####TO DO - here semantic is given by clutter mask
soft_sem = torch.argmax(soft_sem, dim=1, keepdim=True)
soft_sem = torch.clamp(soft_sem, min=0, max=1)
masks = torch.zeros_like(seg_pred).to(seg_pred.device)
masks.scatter_(1, soft_sem, 1)
return masks
def scale(self, im, nR, nC):
nR0 = len(im) # source number of rows
nC0 = len(im[0]) # source number of columns
print('scaling',nR0,nC0)
return [[ im[int(nR0 * r / nR)][int(nC0 * c / nC)]
for c in range(nC)] for r in range(nR)]
def room_heightmap(self,b_depth, layout_mask):
####NEW PRED DEPTH transforms
d_ceiling, d_floor, c_dist, f_dist = self.d2l.batched_atlanta_transform_from_depth(b_depth)#####input Bx1xhxw
fc_ration = c_dist / f_dist
##d_ceiling = self.resize_crop(d_ceiling.squeeze(0).squeeze(0).numpy(),fc_ration, layout_mask.shape[2])####TO DO check it
if(self.device == 'cpu'):
d_ceiling = self.resize_crop(d_ceiling.squeeze(0).squeeze(0).detach().numpy(),fc_ration, layout_mask.shape[2])####TO DO check it
d_ceiling += f_dist.detach().numpy()
else:
d_ceiling = self.resize_crop(d_ceiling.squeeze(0).squeeze(0).detach().cpu().numpy(),fc_ration, layout_mask.shape[2])
d_ceiling += f_dist.detach().cpu().numpy()
if(self.device == 'cpu'):
heightmap = layout_mask.squeeze(1).squeeze(0) * d_ceiling
else:
heightmap = layout_mask.squeeze(1).squeeze(0) * torch.Tensor(d_ceiling).to(self.device)
return heightmap
def resize_crop(self,img, scale, size):
re_size = int(img.shape[0]*scale)
if(re_size>0):
img = cv2.resize(img, (re_size, re_size), cv2.INTER_AREA)
if size <= re_size:
pd = int((re_size-size)/2)
img = img[pd:pd+size,pd:pd+size]
else:
new = np.zeros((size,size))
pd = int((size-re_size)/2)
new[pd:pd+re_size,pd:pd+re_size] = img[:,:]
img = new
return img
def config_s3d():
a = argparse.ArgumentParser(description='Generate nadir rooms map from Structured3D-like datasets')
a.add_argument('--data_root', default='./data/s3d_floor', type=str, help='path to raw Structured3D_panorama folder')
a.add_argument('--output', default='./results/s3d_nadirmaps', type=str, help='path to output folder')
a.add_argument('--device', default='cuda', type=str, help='processor device')
a.add_argument('--encode_heightmap', default=False, type=bool, help='encode ceiling heightmap')
a.add_argument('--pth', default='./nadirshape/ckpt/DEMO_RUNS/s3d_depth/best_valid.pth', type=str, help='d2l pth')###n
a.add_argument('--data_type', default='s3d', type=str, help='dataset s3d or zind')
a.add_argument('--save_metric', default=True, type=bool, help='save metric information')
a.add_argument('--split_file', default='', type=str, help='train/val/test splitting')###nb only for zind
args = a.parse_args()
return args
def merge_nadir_shapes(args):
data_root = args.data_root
scenes = os.listdir(data_root)
instance_id = 0
######annotations support
### prepare
outFolder = args.output
if not os.path.exists(outFolder):
os.mkdir(outFolder)
annotation_outFolder = os.path.join(outFolder, 'annotations')
if not os.path.exists(annotation_outFolder):
os.mkdir(annotation_outFolder)
train_img_folder = os.path.join(outFolder, 'train')
val_img_folder = os.path.join(outFolder, 'val')
test_img_folder = os.path.join(outFolder, 'test')
for img_folder in [train_img_folder, val_img_folder, test_img_folder]:
if not os.path.exists(img_folder):
os.mkdir(img_folder)
coco_train_json_path = os.path.join(annotation_outFolder, 'train.json')
coco_val_json_path = os.path.join(annotation_outFolder, 'val.json')
coco_test_json_path = os.path.join(annotation_outFolder, 'test.json')
coco_train_dict = {"images":[],"annotations":[],"categories":[],"metric":[]}
coco_val_dict = {"images":[],"annotations":[],"categories":[],"metric":[]}
coco_test_dict = {"images":[],"annotations":[],"categories":[],"metric":[]}
for key, value in type2id.items():
type_dict = {"supercategory": "room", "id": value, "name": key}
coco_train_dict["categories"].append(type_dict)
coco_val_dict["categories"].append(type_dict)
coco_test_dict["categories"].append(type_dict)
# Loading trained model
net = load_trained_model(NadirShapeNet, args.pth).to(args.device)
net.eval()
fp_fov = net.fov
d2l = D2L(gpu=True, H = 512, W = 1024, fp_fov = fp_fov)####new fov
for scene in tqdm(scenes):
#####
scene_path = os.path.join(data_root, scene)
print('processing scene',scene)
rtc = NadirTransformsCreator(scene_path, net, d2l, device = args.device, data_type=args.data_type,
encode_heightmap = args.encode_heightmap)
####saved nadir map size
wo = 256
ho = 256
###########GT starts
scene_id = scene.split('_')[-1]
if (int(scene_id) in invalid_scenes_ids):
print('skip {}'.format(scene))
##continue
else:
density, metric_normalization_dict = rtc.generate_floorplan_map(out_w=wo, out_h=ho, get_normalization = True)
### rescale raw annotations
if(args.data_type=='zind'):
##scale_zind_annotations(scene_path) ####CHECK IT
#NB. assuming annotations are already scaled to metric at rtc init time
normalized_annos = normalize_annotations(scene_path, metric_normalization_dict,json_name="annotation_3dm.json")
else:
normalized_annos = normalize_annotations(scene_path, metric_normalization_dict,json_name="annotation_3d.json")
### prepare coco dict
img_id = int(scene_id)
img_dict = {}
img_dict["file_name"] = scene_id + '.png'
img_dict["id"] = img_id
img_dict["width"] = wo
img_dict["height"] = ho
### parse annotations
polys = parse_floor_plan_polys(normalized_annos)#
polygons_list = generate_coco_dict(normalized_annos, polys, instance_id, img_id, ignore_types=['outwall'])
instance_id += len(polygons_list)
if(args.save_metric):
metric_dict = {}
metric_normalization_dict["min_coords"] /= 1000.0 ###as meters
metric_normalization_dict["max_coords"] /= 1000.0
metric_dict["min_coords"] = metric_normalization_dict["min_coords"].tolist()
metric_dict["max_coords"] = metric_normalization_dict["max_coords"].tolist()
metric_dict["image_res"] = metric_normalization_dict["image_res"].tolist()
metric_dict["map_res"] = metric_normalization_dict["map_res"]
metric_dict["heights"] = metric_normalization_dict["heights"]
#
if(args.data_type == 'zind'):
print('opening',args.split_file)
with open(args.split_file, "r") as f:
split_json = json.load(f)
train_list = split_json['train']
val_list = split_json['val']
test_list = split_json['test']
print('ZIND train/val/test/tot buildings',len(train_list),len(val_list),len(test_list), len(train_list)+len(val_list)+len(test_list))
### train
if scene_id[:-1] in train_list:
##print('DEBUG saving annotations', scene_id[:-1])
coco_train_dict["images"].append(img_dict)
coco_train_dict["annotations"] += polygons_list
export_density(density, train_img_folder, scene_id)
if(args.save_metric):
metric_path = os.path.join(train_img_folder, scene_id+'.json')
### val
if scene_id[:-1] in val_list:
coco_val_dict["images"].append(img_dict)
coco_val_dict["annotations"] += polygons_list
export_density(density, val_img_folder, scene_id)
if(args.save_metric):
metric_path = os.path.join(val_img_folder, scene_id+'.json')
### test
if scene_id[:-1] in test_list:
coco_test_dict["images"].append(img_dict)
coco_test_dict["annotations"] += polygons_list
export_density(density, test_img_folder, scene_id)
if(args.save_metric):
metric_path = os.path.join(test_img_folder, scene_id+'.json')
else:
### train
if int(scene_id) < 3000:
coco_train_dict["images"].append(img_dict)
coco_train_dict["annotations"] += polygons_list
export_density(density, train_img_folder, scene_id)
if(args.save_metric):
metric_path = os.path.join(train_img_folder, scene_id+'.json')
### val
elif int(scene_id) >= 3000 and int(scene_id) < 3250:
coco_val_dict["images"].append(img_dict)
coco_val_dict["annotations"] += polygons_list
export_density(density, val_img_folder, scene_id)
if(args.save_metric):
metric_path = os.path.join(val_img_folder, scene_id+'.json')
### test
else:
coco_test_dict["images"].append(img_dict)
coco_test_dict["annotations"] += polygons_list
export_density(density, test_img_folder, scene_id)
if(args.save_metric):
metric_path = os.path.join(test_img_folder, scene_id+'.json')
with open(coco_train_json_path, 'w') as f:
json.dump(coco_train_dict, f)
with open(coco_val_json_path, 'w') as f:
json.dump(coco_val_dict, f)
with open(coco_test_json_path, 'w') as f:
json.dump(coco_test_dict, f)
if(args.save_metric):
##print('saving',metric_path)
with open(metric_path, 'w') as f:
json.dump(metric_dict, f)
def main(args):
##os.environ['CUDA_VISIBLE_DEVICES'] = '3'
merge_nadir_shapes(args)
if __name__ == "__main__":
main(config_s3d())