-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmumdia.py
739 lines (642 loc) · 22.7 KB
/
mumdia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
from tqdm import tqdm
import numpy as np
import polars as pl
from tqdm import tqdm
import mokapot
from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Manager
import logging
import os
from sklearn.neural_network import MLPClassifier
from typing import Tuple, List
from sklearn.linear_model import Lasso
from prediction_wrappers.wrapper_deeplc import (
get_predictions_retention_time_mainloop,
)
from feature_generators.features_retention_time import add_retention_time_features
from feature_generators.features_general import add_count_and_filter_peptides
from feature_generators.features_fragment_intensity import (
get_features_fragment_intensity,
)
from prediction_wrappers.wrapper_ms2pip import (
get_predictions_fragment_intensity_main_loop,
get_predictions_fragment_intensity,
)
os.environ["POLARS_MAX_THREADS"] = "1"
# TODO make a logger module in a seperate file
from utilities.logger import log_info
from typing import Any
import xgboost as xgb
from mokapot.model import PercolatorModel
from prediction_wrappers.wrapper_ms2pip import (
get_predictions_fragment_intensity_main_loop,
)
from prediction_wrappers.wrapper_deeplc import (
get_predictions_retention_time_mainloop,
)
from keras.models import Sequential
from keras.layers import Dense
from scikeras.wrappers import KerasClassifier
from sklearn.model_selection import cross_val_score
from contextlib import contextmanager
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
# standard_features = ["SpecId", "Label", "ExpMass", "CalcMass", "Peptide", "ScanNr"]
last_features = ["proteins"]
# Function to create the Keras model
def create_model():
model = Sequential()
model.add(Dense(100, input_dim=169, activation="relu"))
model.add(Dense(20, activation="relu"))
model.add(Dense(10, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
return model
def transform_bool(value: bool) -> int:
"""
Transform a boolean value to an integer.
Parameters:
- value (bool): A boolean value.
Returns:
- int: Returns -1 if the value is True, else 1.
"""
return -1 if value else 1
def run_mokapot() -> None:
"""
Run the mokapot analysis on PSMs (Peptide-Spectrum Matches) read from a PIN file.
The results are saved in tab-delimited text files.
Side effects:
- Reads PSMs from "outfile.pin".
- Saves the analysis results in "mokapot.psms.txt" and "mokapot.peptides.txt".
"""
# Read the PSMs from the PIN file:
psms = mokapot.read_pin("outfile.pin")
# model = MLPClassifier(hidden_layer_sizes=(10, 5, 5, 5), max_iter=50)
# Wrap the model with KerasClassifier
model = KerasClassifier(
build_fn=create_model, epochs=100, batch_size=1000, verbose=10
)
results, models = mokapot.brew(psms, mokapot.Model(model), folds=5)
# model = xgb.XGBClassifier(n_estimators=100, max_depth=8, learning_rate=0.1)
# results, models = mokapot.brew(
# psms, mokapot.Model(model, max_iter=25), max_workers=20, folds=10
# )
# model = create_model()
# Conduct the mokapot analysis:
# results, models = mokapot.brew(psms, model, folds=3)
# Save the results to two tab-delimited files
# "mokapot.psms.txt" and "mokapot.peptides.txt"
result_files = results.to_txt()
# https://stackoverflow.com/questions/73658716/how-to-calculate-correlation-between-1d-numpy-array-and-every-column-of-a-2d-num
def corr_np(data1, data2):
mean1 = data1.mean()
mean2 = data2.mean()
std1 = data1.std()
std2 = data2.std()
corr = ((data1 * data2).mean() - mean1 * mean2) / (std1 * std2)
return corr
def pearson_np(x, y):
return np.array([corr_np(x[:, i], y) for i in range(x.shape[1])])
import numpy as np
def collapse_columns(
df_psms_sub_peptidoform: pl.DataFrame,
collapse_max_columns: list[str] = [],
collapse_min_columns: list[str] = [],
collapse_mean_columns: list[str] = [],
collapse_sum_columns: list[str] = [],
get_first_entry: list[str] = [],
):
# Combine operations into a single loop to reduce redundancy
collapsed_columns = [df_psms_sub_peptidoform.select(get_first_entry).head(1)]
operations = (
("max", collapse_max_columns),
("min", collapse_min_columns),
("mean", collapse_mean_columns),
("sum", collapse_sum_columns),
)
for op, collapse_list in operations:
collapsed_columns.append(
getattr(df_psms_sub_peptidoform[collapse_list], op)().rename(
{col: f"{col}_{op}" for col in collapse_list}
)
)
# Use Polars concat for efficient horizontal concatenation
return pl.concat(collapsed_columns, how="horizontal")
def add_feature_columns(data, feature_name, values, method, pad_size=10):
if len(data) == 0:
data = np.zeros(pad_size)
elif method == "percentile":
if type(data[0]) != np.float64:
data = np.concatenate(data)
data = np.percentile(data, values)
data = np.pad(data, (0, pad_size), mode="constant", constant_values=0.0)
elif method == "top":
if type(data[0]) != np.float64:
data = np.concatenate(data)
data = np.sort(data, kind="heapsort", axis=None)[::-1]
data = np.pad(data, (0, pad_size), mode="constant", constant_values=0.0)
column_names = [f"{feature_name}_{v}" for v in values]
return pl.DataFrame({column_names[i]: data[i] for i in range(len(column_names))})
def run_peptidoform(
df_psms_sub_peptidoform: pl.DataFrame,
correlations_list: list[float],
selected_features: List[str] = [],
collect_distributions: list[int] = [
0,
5,
10,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
65,
70,
75,
80,
85,
90,
95,
100,
],
collect_top: list[int] = [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
],
collapse_max_columns: list[str] = [
"fragment_ppm",
"rank",
"delta_next",
"delta_rt_model",
"matched_peaks",
"longest_b",
"longest_y",
"matched_intensity_pct",
"fragment_intensity",
"poisson",
"spectrum_q",
"peptide_q",
"rt",
"rt_predictions",
"rt_prediction_error_abs",
"rt_prediction_error_abs_relative",
"precursor_ppm",
"hyperscore",
"delta_best",
],
collapse_min_columns: list[str] = [
"fragment_ppm",
"rank",
"delta_next",
"delta_rt_model",
"matched_peaks",
"longest_b",
"longest_y",
"matched_intensity_pct",
"fragment_intensity",
"poisson",
"spectrum_q",
"peptide_q",
"rt",
"rt_predictions",
"rt_prediction_error_abs",
"rt_prediction_error_abs_relative",
"precursor_ppm",
"hyperscore",
"delta_best",
],
collapse_mean_columns: list[str] = [
"fragment_ppm",
"rank",
"delta_next",
"delta_rt_model",
"matched_peaks",
"longest_b",
"longest_y",
"matched_intensity_pct",
"fragment_intensity",
"poisson",
"spectrum_q",
"peptide_q",
"rt",
"rt_predictions",
"rt_prediction_error_abs",
"rt_prediction_error_abs_relative",
"precursor_ppm",
"hyperscore",
"delta_best",
],
collapse_sum_columns: list[str] = [
"hyperscore",
"delta_rt_model",
"matched_peaks",
"longest_b",
"longest_y",
"matched_intensity_pct",
"fragment_intensity",
"rt",
"rt_predictions",
"rt_prediction_error_abs",
"rt_prediction_error_abs_relative",
"precursor_ppm",
"fragment_ppm",
"delta_next",
"delta_best",
],
get_first_entry: list[str] = [
"psm_id",
"filename",
"scannr",
"peptide",
"num_proteins",
"proteins",
"expmass",
"calcmass",
"is_decoy",
"charge",
"peptide_len",
"missed_cleavages",
],
pad_size=10,
) -> pl.DataFrame:
"""
Process peptidoform data to enrich it with correlation and other calculated features.
Parameters:
- df_psms_sub_peptidoform (pl.DataFrame): DataFrame containing PSMs data.
- df_fragment_sub_peptidoform (pl.DataFrame): DataFrame containing fragment data.
- correlations_list (list[float]): List of correlation values.
Returns:
- pl.DataFrame: Enriched DataFrame with additional features.
"""
# Perform bulk operations for max, min, mean, and sum
distribution_features = [
v for v in selected_features if v.startswith("distribution_")
]
distribution_features_with_percentile = [
dist_f + "_" + str(v)
for dist_f in distribution_features
for v in collect_distributions
]
top_features = [v for v in selected_features if v.startswith("top_")]
top_features_with_percentile = [
dist_f + "_" + str(v) for dist_f in top_features for v in collect_top
]
df_psms_sub_peptidoform_collapsed = collapse_columns(
df_psms_sub_peptidoform,
collapse_max_columns=collapse_max_columns,
collapse_min_columns=collapse_min_columns,
collapse_mean_columns=collapse_mean_columns,
collapse_sum_columns=collapse_sum_columns,
get_first_entry=get_first_entry,
)
# Update selected features
selected_features = [
v for v in list(df_psms_sub_peptidoform_collapsed.columns) if v != "proteins"
]
correlations, correlation_matrix_psm_ids, correlation_matrix_frag_ids = (
correlations_list
)
df_psms_sub_peptidoform_collapsed = df_psms_sub_peptidoform_collapsed.with_columns(
pl.concat(
[
add_feature_columns(
correlation_matrix_psm_ids,
"distribution_correlation_matrix_psm_ids",
collect_distributions,
"percentile",
pad_size=len(collect_distributions),
),
add_feature_columns(
correlation_matrix_frag_ids,
"distribution_correlation_matrix_frag_ids",
collect_distributions,
"percentile",
pad_size=len(collect_distributions),
),
add_feature_columns(
correlations,
"distribution_correlation_individual",
collect_distributions,
"percentile",
pad_size=len(collect_distributions),
),
add_feature_columns(
correlation_matrix_psm_ids,
"top_correlation_matrix_psm_ids",
collect_top,
"top",
pad_size,
),
add_feature_columns(
correlation_matrix_frag_ids,
"top_correlation_matrix_frag_ids",
collect_top,
"top",
pad_size,
),
add_feature_columns(
correlations,
"top_correlation_individual",
collect_top,
"top",
pad_size,
),
],
how="horizontal",
)
)
df_psms_sub_peptidoform_collapsed = df_psms_sub_peptidoform_collapsed.with_columns(
pl.when(pl.col("is_decoy")).then(-1).otherwise(1).alias("is_decoy")
)
df_psms_sub_peptidoform_collapsed = df_psms_sub_peptidoform_collapsed.with_columns(
pl.Series(
"SpecId",
df_psms_sub_peptidoform_collapsed["psm_id"]
+ "|"
+ df_psms_sub_peptidoform_collapsed["filename"]
+ "|"
+ df_psms_sub_peptidoform_collapsed["scannr"],
)
)
columns_for_pin = ["SpecId"]
columns_for_pin.extend(
[
v
for v in selected_features
if not v.startswith("distribution_") and not v.startswith("top_")
]
)
columns_for_pin.extend(distribution_features_with_percentile)
columns_for_pin.extend(top_features_with_percentile)
columns_for_pin.extend(last_features)
# shape of elution
# number of matches
# time of profile
# order conservation
# number of peaks
# number of peaks matched
# apex squared error
# MS1 peak present
# MS1 correlation
# MS1 correlation with MS2
# TODO the renaming, dropping, filling, and cloning can be done later in the pipeline this is more efficient
return df_psms_sub_peptidoform_collapsed[columns_for_pin]
def dataframe_to_dict_fragintensity(df_fragment: pl.DataFrame) -> dict:
"""
Converts a DataFrame of fragment intensities into a dictionary.
Parameters:
- df_fragment (pl.DataFrame): A DataFrame containing fragment intensity data.
Returns:
- dict: A dictionary with PSM IDs as keys and corresponding DataFrames as values.
"""
fragment_dict = {}
for psm_id, sub_df_fragment in df_fragment.group_by("psm_id"):
fragment_dict[psm_id] = sub_df_fragment
return fragment_dict
def run_peptidoform_wrapper(
args: Tuple[pl.DataFrame, pl.DataFrame, List[float]]
) -> pl.DataFrame:
"""
Wrapper function for running the peptidoform processing.
Parameters:
- args (Tuple[pl.DataFrame, pl.DataFrame, List[float]]): A tuple containing the DataFrames and list of correlations.
Returns:
- pl.DataFrame: The processed DataFrame from run_peptidoform function.
"""
return run_peptidoform(*args)
def process_peptidoforms(
peptidoform_args: List[Tuple[pl.DataFrame, pl.DataFrame, List[float]]],
max_workers: int = 2,
) -> List[pl.DataFrame]:
with ProcessPoolExecutor(max_workers=max_workers) as executor:
results = executor.map(run_peptidoform_wrapper, peptidoform_args)
return list(results)
def deconv_filter_fragment_spectra(
ms2pip_predictions: dict,
df_fragment: pl.DataFrame,
min_coefficient=0.0000000001,
alpha_penalty=0.1,
):
# Flatten the nested dictionary into a single mapping
flat_ms2pip = {
(peptide, fragment): value
for peptide, fragments in ms2pip_predictions.items()
for fragment, value in fragments.items()
}
df_fragment = df_fragment.with_columns(
pl.concat_str([pl.col("peptide"), pl.col("charge")], separator="/").alias(
"peptidoform"
)
)
df_fragment = df_fragment.with_columns(
pl.struct(["peptidoform", "fragment_name"])
.apply(lambda x: flat_ms2pip.get((x["peptidoform"], x["fragment_name"]), None))
.alias("predicted_intensity")
)
df_fragment = df_fragment.with_columns(pl.col("predicted_intensity").fill_null(0.0))
selected_peptidoforms = []
for group in df_fragment.group_by("scannr"):
df_scan = group[1].sort("peak_identifier")
exp_spectrum_intensity = (
df_scan.unique(subset=["peak_identifier"], keep="first")[
"fragment_intensity"
]
.fill_null(0.0)
.to_numpy()
)
exp_spectrum_intensity_normalized = exp_spectrum_intensity / np.sum(
exp_spectrum_intensity
)
pivot_df = df_scan.pivot(
values="predicted_intensity",
index="peptidoform",
columns="peak_identifier",
aggregate_function="sum",
)
pivot_df_intensity = pivot_df[pivot_df.columns[1:]].fill_null(0.0).to_numpy().T
lasso = Lasso(alpha=alpha_penalty, positive=True, max_iter=100000)
lasso.fit(pivot_df_intensity, exp_spectrum_intensity_normalized)
coefficients = lasso.coef_
selected_peptidoforms_filter = pl.Series(coefficients > min_coefficient)
selected_peptidoforms.extend(
list(pivot_df[pivot_df.columns[0]].filter(selected_peptidoforms_filter))
)
return selected_peptidoforms
def calculate_features(
df_psms: pl.DataFrame,
df_fragment: pl.DataFrame,
df_fragment_max: pl.DataFrame,
df_fragment_max_peptide: pl.DataFrame,
filter_rel_rt_error: float = 0.1,
min_occurrences: int = 0,
filter_max_apex_rt: float = 0.75,
config: dict = {},
deeplc_model=None,
write_deeplc_pickle: bool = False,
write_ms2pip_pickle: bool = False,
write_correlation_pickles: bool = False,
read_deeplc_pickle: bool = False,
read_ms2pip_pickle: bool = False,
read_correlation_pickles: bool = False,
) -> None:
"""
Process multiple peptidoforms in parallel using ProcessPoolExecutor.
Parameters:
- peptidoform_args (List[Tuple[pl.DataFrame, pl.DataFrame, List[float]]]): A list of arguments to pass to the peptidoform processing function.
- max_workers (int, optional): The maximum number of worker processes. Default is 2.
Returns:
- List[pl.DataFrame]: A list of DataFrames, each representing processed data for a peptidoform.
- df_fragment (pl.DataFrame): DataFrame containing fragment data.
- df_fragment_max (pl.DataFrame): DataFrame containing maximum fragment information.
- df_fragment_max_peptide (pl.DataFrame): DataFrame containing maximum fragment information for each peptide.
- filter_rel_rt_error (float, optional): The relative retention time error filter threshold. Default is 0.05.
- min_occurrences (int, optional): The minimum number of occurrences for a peptide to be included. Default is 0.
- filter_max_apex_rt (float, optional): The filter threshold for maximum apex retention time. Default is 5.0.
Side effects:
- Processes the DataFrames to calculate additional features and updates them in-place.
- Writes the results to a file "outfile.pin".
"""
log_info("Obtaining retention time predictions for the main loop...")
dlc_calibration, dlc_transfer_learn, predictions_deeplc = (
get_predictions_retention_time_mainloop(
df_psms, write_deeplc_pickle, read_deeplc_pickle, deeplc_model
)
)
log_info("Obtaining features retention time...")
# TODO make it adjustable what features to include
df_psms = add_retention_time_features(
df_psms, predictions_deeplc, filter_rel_rt_error=0.2
)
log_info(
"Counting individual peptides per MS2 and filtering by minimum occurrences"
)
df_psms = add_count_and_filter_peptides(df_psms, min_occurrences)
log_info("Obtaining fragment intensity predictions for the main loop...")
df_fragment, ms2pip_predictions = get_predictions_fragment_intensity_main_loop(
df_psms,
df_fragment,
read_ms2pip_pickle=read_ms2pip_pickle,
write_ms2pip_pickle=write_ms2pip_pickle,
)
log_info("Obtaining features fragment intensity predictions...")
fragment_dict, correlations_fragment_dict = get_features_fragment_intensity(
ms2pip_predictions,
df_fragment,
df_fragment_max_peptide,
read_correlation_pickles=read_correlation_pickles,
write_correlation_pickles=write_correlation_pickles,
)
#########
# Step 6: Go from peptidoform ID to subslice of the dataframe
#########
log_info("Step 6")
psm_dict = {}
for (peptidoform, charge), df_sub_peptidoform in tqdm(
df_psms.group_by(["peptide", "charge"])
):
psm_dict[f"{peptidoform}/{charge}"] = df_sub_peptidoform
peptidoform_args = [
(psm_dict[k], fragment_dict[k], correlations_fragment_dict[k])
for k in psm_dict.keys()
if k in correlations_fragment_dict.keys()
]
pin_in = []
# pin_in = process_peptidoforms(peptidoform_args)
#########
# Step 7: Calculate features for each peptidoform
#########
log_info("Step 7")
for (
df_psms_sub_peptidoform,
df_fragment_sub_peptidoform,
correlations_list,
) in tqdm(peptidoform_args):
pin_in.append(
run_peptidoform(
df_psms_sub_peptidoform,
# df_fragment_sub_peptidoform,
correlations_list,
config["mumdia"]["rescoring_features"],
)
)
#########
# Step 8: Concatenate the results
#########
log_info("Step 8")
concatenated_df = (
pl.concat(pin_in)
.rename(
{
"expmass": "ExpMass",
"calcmass": "CalcMass",
"psm_id": "ScanNr",
"peptide": "Peptide",
"proteins": "Proteins",
"is_decoy": "Label",
}
)
.drop("scannr")
.fill_null(0.0)
.fill_nan(0.0)
)
concatenated_df.write_csv("outfile.pin", separator="\t")
def main(
df_fragment: pl.DataFrame = None,
df_psms: pl.DataFrame = None,
df_fragment_max: pl.DataFrame = None,
df_fragment_max_peptide: pl.DataFrame = None,
config: dict = {},
deeplc_model=None,
write_deeplc_pickle: bool = False,
write_ms2pip_pickle: bool = False,
write_correlation_pickles: bool = False,
read_deeplc_pickle: bool = False,
read_ms2pip_pickle: bool = False,
read_correlation_pickles: bool = False,
) -> None:
"""
Main function to run the complete analysis pipeline.
Parameters:
- parquet_file_results (str): The file path for the parquet file containing results.
- parquet_file_fragments (str): The file path for the parquet file containing fragment data.
- q_value_filter (float, optional): The filter threshold for q-values. Default is 0.1.
Side effects:
- Reads data from the specified parquet files.
- Performs data processing and feature calculation.
- Outputs processed data to files and logs information about t he process.
"""
df_psms = pl.DataFrame(df_psms)
df_psms = df_psms.filter(~df_psms["peptide"].str.contains("U"))
df_psms = df_psms.sort("rt")
calculate_features(
df_psms,
df_fragment,
df_fragment_max,
df_fragment_max_peptide,
write_deeplc_pickle=write_deeplc_pickle,
write_ms2pip_pickle=write_ms2pip_pickle,
write_correlation_pickles=write_correlation_pickles,
read_deeplc_pickle=read_deeplc_pickle,
read_ms2pip_pickle=read_ms2pip_pickle,
read_correlation_pickles=read_correlation_pickles,
deeplc_model=deeplc_model,
config=config,
)
log_info("Done running MuMDIA...")
run_mokapot()
if __name__ == "__main__":
# main("results/results.sage.parquet", "results/matched_fragments.sage.parquet")
# print("going to run mokapot")
run_mokapot()