-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathOptim.py
executable file
·381 lines (275 loc) · 11 KB
/
Optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from Unstructured import MyMesh, rand_Amesh_gen, rand_grid_gen, grid
from pyamg.gallery.diffusion import diffusion_stencil_2d
from pyamg.gallery import stencil_grid
from numpy import sin, cos, pi
import matplotlib.pyplot as plt
from scipy.spatial import Delaunay
import scipy
import fem
import networkx as nx
import numpy as np
import scipy as sp
import pygmsh
import time
from scipy.spatial import ConvexHull, convex_hull_plot_2d
import random
import torch as T
from torch_geometric.data import Data
import Batch_Graph as bg
import copy
import networkx as nx
from networkx.drawing.nx_pylab import draw_networkx
from pyamg.gallery.diffusion import diffusion_stencil_2d
from pyamg.gallery import stencil_grid
import torch_geometric
from torch_geometric.data import Data
from pyamg.gallery import poisson
import matplotlib as mpl
import os
from MG_Agent import Agent
from scipy.sparse import csr_matrix, coo_matrix, isspmatrix_csr, isspmatrix_csc
from pyamg import amg_core
from pyamg.graph import lloyd_cluster
from Scott_greedy import greedy_coarsening
import sys
# list(list(G.edges(data=True))[1][-1].values())
def from_scipy_sparse_matrix(A):
r"""Converts a scipy sparse matrix to edge indices and edge attributes.
Args:
A (scipy.sparse): A sparse matrix.
"""
A = A.tocoo()
row = T.from_numpy(A.row).to(T.long)
col = T.from_numpy(A.col).to(T.long)
edge_index = T.stack([row, col], dim=0)
edge_weight = T.from_numpy(A.data)
return edge_index, edge_weight
def from_networkx(G):
r"""Converts a :obj:`networkx.Graph` or :obj:`networkx.DiGraph` to a
:class:`torch_geometric.data.Data` instance.
Args:
G (networkx.Graph or networkx.DiGraph): A networkx graph.
"""
G = nx.convert_node_labels_to_integers(G)
G = G.to_directed() if not nx.is_directed(G) else G
edge_index = T.LongTensor(list(G.edges)).t().contiguous()
data = {}
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
for key, value in feat_dict.items():
data[str(key)] = [value] if i == 0 else data[str(key)] + [value]
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
for key, value in feat_dict.items():
data[str(key)] = [value] if i == 0 else data[str(key)] + [value]
for key, item in data.items():
try:
data[key] = T.tensor(item)
except ValueError:
pass
data['edge_index'] = edge_index.view(2, -1)
data = torch_geometric.data.Data.from_dict(data)
data.num_nodes = G.number_of_nodes()
return data
def structured(n_row, n_col, Theta):
num_nodes = int(n_row*n_col)
X = np.array([[i/(n_col*n_row) for i in range(n_col)] for j in range(n_row)]).flatten()
Y = np.array([[j/(n_row*n_col) for i in range(n_col)] for j in range(n_row)]).flatten()
E = []
V = []
nv = num_nodes
N = [i for i in range(num_nodes)]
epsilon = 1
theta = 1 #param of A matrix
sten = diffusion_stencil_2d(epsilon=epsilon,theta=theta,type='FD')
AA = stencil_grid(sten, (n_row, n_col), dtype=float, format='csr')
nz_row = []
nz_col = []
t1 = time.time()
for i in range(n_row):
for j in range(n_col):
if i!=n_row-1:
if j!=n_col-1:
nz_row.append(i*n_col+j)
nz_row.append(i*n_col+j)
nz_col.append(i*n_col+j+1)
nz_col.append(i*n_col+j+n_col)
else:
nz_row.append(i*n_col+j)
nz_col.append(i*n_col+j+n_col)
if i == n_row-1:
if j!=n_col-1:
nz_row.append(i*n_col+j)
nz_col.append(i*n_col+j+1)
nz_row = np.array(nz_row)
nz_col = np.array(nz_col)
# print ("t21", t2-t1)
e = np.concatenate((np.expand_dims(nz_row,axis=1), np.expand_dims(nz_col, axis=1)), axis=1)
Edges = list(tuple(map(tuple, e)))
num_edges = len(Edges)
g = rand_grid_gen(None)
mesh = copy.deepcopy(g.mesh)
mesh.X = X
mesh.Y = Y
mesh.E = E
mesh.V = V
mesh.nv = nv
mesh.ne = []
mesh.N = N
mesh.Edges = Edges
mesh.num_edges = num_edges
fine_nodes = [i for i in range(num_nodes)]
grid_ = grid(AA,fine_nodes,[], mesh, Theta)
# print ("t21", t2-t1)
# print ("t32", t3-t2)
# print ("t43", t4-t3)
return grid_
def lloyd_aggregation(C, ratio=0.03, distance='unit', maxiter=10):
"""Aggregate nodes using Lloyd Clustering.
Parameters
----------
C : csr_matrix
strength of connection matrix
ratio : scalar
Fraction of the nodes which will be seeds.
distance : ['unit','abs','inv',None]
Distance assigned to each edge of the graph G used in Lloyd clustering
For each nonzero value C[i,j]:
======= ===========================
'unit' G[i,j] = 1
'abs' G[i,j] = abs(C[i,j])
'inv' G[i,j] = 1.0/abs(C[i,j])
'same' G[i,j] = C[i,j]
'sub' G[i,j] = C[i,j] - min(C)
======= ===========================
maxiter : int
Maximum number of iterations to perform
Returns
-------
AggOp : csr_matrix
aggregation operator which determines the sparsity pattern
of the tentative prolongator
seeds : array
array of Cpts, i.e., Cpts[i] = root node of aggregate i
See Also
--------
amg_core.standard_aggregation
Examples
--------
>>> from scipy.sparse import csr_matrix
>>> from pyamg.gallery import poisson
>>> from pyamg.aggregation.aggregate import lloyd_aggregation
>>> A = poisson((4,), format='csr') # 1D mesh with 4 vertices
>>> A.todense()
matrix([[ 2., -1., 0., 0.],
[-1., 2., -1., 0.],
[ 0., -1., 2., -1.],
[ 0., 0., -1., 2.]])
>>> lloyd_aggregation(A)[0].todense() # one aggregate
matrix([[1],
[1],
[1],
[1]], dtype=int8)
>>> # more seeding for two aggregates
>>> Agg = lloyd_aggregation(A,ratio=0.5)[0].todense()
"""
if ratio <= 0 or ratio > 1:
raise ValueError('ratio must be > 0.0 and <= 1.0')
if not (isspmatrix_csr(C) or isspmatrix_csc(C)):
raise TypeError('expected csr_matrix or csc_matrix')
if distance == 'unit':
data = np.ones_like(C.data).astype(float)
elif distance == 'abs':
data = abs(C.data)
elif distance == 'inv':
data = 1.0/abs(C.data)
elif distance is 'same':
data = C.data
elif distance is 'min':
data = C.data - C.data.min()
else:
raise ValueError('unrecognized value distance=%s' % distance)
if C.dtype == complex:
data = np.real(data)
assert(data.min() >= 0)
G = C.__class__((data, C.indices, C.indptr), shape=C.shape)
num_seeds = int(min(max(ratio * G.shape[0], 1), G.shape[0]))
distances, clusters, seeds = lloyd_cluster(G, num_seeds, maxiter=maxiter)
row = (clusters >= 0).nonzero()[0]
col = clusters[row]
data = np.ones(len(row), dtype='int8')
AggOp = coo_matrix((data, (row, col)),
shape=(G.shape[0], num_seeds)).tocsr()
return AggOp, seeds, col
'''
sz_list = [100*(i+1) for i in range(1)]
K = 4
agent = Agent(dim = 32, K = K, gamma = 1, epsilon = 1, \
lr= 0.001, mem_size = 5000, batch_size = 64, \
eps_min = 0.01 , eps_dec = 1.333/5000, replace=10)
agent.q_eval.load_state_dict(T.load('Models/MPNN/Dueling_MPNN900.pth'))
#agent.q_eval.load_state_dict(T.load('Models/Dueling_batch_train_final.pth'))
agent.epsilon = 0
list_size = []
list_time = []
'''
def Post_processing(num_iter, agent, grid_, K):
for _ in range(num_iter):
ffrac = sum(grid_.active)/grid_.num_nodes
copy_grid = copy.deepcopy(grid_)
center = np.random.randint(0,grid_.num_nodes)
region2 = grid_.node_hop_neigh(center, 2*K)
region = grid_.node_hop_neigh(center, K)
indices = []
newly_added = []
for node in region:
news = grid_.uncoarsen(node)
newly_added.append(news)
indices.append(region2.index(node))
done = False
while not done:
data = grid_.subgrid(region2)
Q, advantage = agent.q_eval.forward(data)
viols_idx = grid_.is_violating[region2].nonzero()[0].tolist()
viols = np.array(region2)[viols_idx].tolist()
if len(viols_idx) != 0:
node_max = viols[T.argmax(advantage[viols_idx])]
newly_ = grid_.coarsen_node(node_max)
done = True if len(viols_idx) == 0 else False
if ffrac > sum(grid_.active)/grid_.num_nodes:
grid_ = copy_grid
grid_.fine_nodes = grid_.active.nonzero()[0].tolist()#list(set(grid_.fine_nodes)-set(maxes))
grid_.coarse_nodes = np.nonzero(grid_.active == 1)[0].tolist()
grid_.violating_nodes = grid_.is_violating.nonzero()[0].tolist()
ffrac = sum(grid_.active)/grid_.num_nodes
return grid_, ffrac
def Linear_Coarsening_Lloyd(g_, agent, Greedy):
grid_ = copy.deepcopy(g_)
grid_ = grid(grid_.A, grid_.fine_nodes, grid_.coarse_nodes, grid_.mesh, grid_.Theta)
if not Greedy:
observation = grid_.data
with T.no_grad():
Q, advantage = agent.q_eval.forward(observation)
adv_tensor = copy.deepcopy(advantage)
done = False
_,_,index_agg = lloyd_aggregation(grid_.A,ratio=0.033,maxiter=1000)
list_agg = []
num_aggs = index_agg.max()+1
for i in range(num_aggs):
list_agg.append(np.nonzero(index_agg==i)[0].tolist())
while not done:
viols = grid_.violating_nodes
for idx in range(num_aggs):
aggreg = np.array(list_agg [idx])
viols = aggreg[grid_.is_violating[aggreg.tolist()].nonzero()[0]].tolist()
if len(viols) != 0:
node_max = viols[T.argmax(adv_tensor[viols])]
_ = grid_.coarsen_node(node_max)
observation = grid_.data
# grid_.active[maxes] = 0
# grid_.is_violating[newly_removed] = 0
grid_.fine_nodes = grid_.active.nonzero()[0].tolist()#list(set(grid_.fine_nodes)-set(maxes))
grid_.violating_nodes = grid_.is_violating.nonzero()[0].tolist()
Q, adv_tensor = agent.q_eval.forward(observation)
done = True if len(grid_.violating_nodes) == 0 else False
else:
grid_ = greedy_coarsening(grid_)
return grid_