-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimage_synthesis.py
311 lines (245 loc) · 13.8 KB
/
image_synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from diffusers import ControlNetModel,StableDiffusionControlNetInpaintPipeline,UNet2DConditionModel,DDIMScheduler,StableDiffusionInpaintPipeline
from diffusers.utils import load_image
import cv2
import os
import subprocess
from PIL import Image
from lang_sam import LangSAM # cd ./lang-segment-anything; pip3 install -e . #cd ./GroundingDINO; pip install -e . # https://github.com/IDEA-Research/GroundingDINO/issues/8 for NameError: name '_C' is not defined
from torchvision.utils import draw_bounding_boxes, draw_segmentation_masks
import torch
import numpy as np
import argparse
def bbox(image="/path/img.png", text="sofa"):
model = LangSAM(sam_type="vit_h")
def draw_image(image, masks, boxes, labels, alpha=0.4):
image = torch.from_numpy(image).permute(2, 0, 1)
if len(boxes) > 0:
image = draw_bounding_boxes(image, boxes, colors=['red'] * len(boxes), labels=labels, width=2)
if len(masks) > 0:
image = draw_segmentation_masks(image, masks=masks, colors=['cyan'] * len(masks), alpha=alpha)
return image.numpy().transpose(1, 2, 0)
def predict(image_path, text_prompt, box_threshold=0.3, text_threshold=0.25):
if isinstance(image_path, str):
image_pil = Image.open(image_path).convert("RGB")
else:
# bug here, need to be improved
image_pil = image_path
masks, boxes, phrases, logits = model.predict(image_pil, text_prompt, box_threshold, text_threshold)
labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]
image_array = np.asarray(image_pil)
image = draw_image(image_array, masks, boxes, labels)
image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image1 = draw_image(np.zeros_like(image_array), masks, [], [], alpha=1.0)
mask_image1 = Image.fromarray(np.uint8(mask_image1)).convert("RGB")
boxes_mask = torch.zeros_like(masks)
new_boxes=[]
# if len(boxes)>1:
# boxes[0] = boxes[1]
for box in boxes:
x1, y1, x2, y2 = box
x1, y1, x2, y2 = int(x1)-1, int(y1)-1, int(x2)+1, int(y2)+1
new_boxes.append([x1, y1, x2, y2])
boxes_mask[:, y1:y2, x1:x2] = 1
mask_image2 = draw_image(np.zeros_like(image_array), boxes_mask, [], [], alpha=1.0)
mask_image2 = Image.fromarray(np.uint8(mask_image2)).convert("RGB")
boxes = torch.tensor(new_boxes)
shape_mask_image = draw_image(np.zeros_like(image_array), masks, [], [], alpha=1.0)
shape_mask_image = Image.fromarray(np.uint8(shape_mask_image)).convert("RGB")
return mask_image2, boxes, image, shape_mask_image
mask_image, boxes, image, shape_mask_image = predict(image, text)
image.save("./tmp/tmp.png")
mask_image.save("./tmp/mask_image.png")
return mask_image, boxes, shape_mask_image
def train_dreambooth(pipe):
if dreambooth:
# IF YOU NEED TO PERSONALIZE THE MODEL
process = subprocess.Popen([
'python', './diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint.py',
'--pretrained_model_name_or_path=' + os.environ['MODEL_NAME'],
'--instance_data_dir=' + os.environ['INSTANCE_DIR'],
'--output_dir=' + os.environ['OUTPUT_DIR'],
'--instance_prompt=' + os.environ['TEXT_PROMPT'],
# '--class_prompt=' + os.environ['CLASS_PROMPT'],
'--resolution=512',
'--train_batch_size=1',
'--gradient_accumulation_steps=1',
'--checkpointing_steps=1800',
'--learning_rate=2e-6',
'--lr_scheduler=constant',
'--lr_warmup_steps=0',
'--max_train_steps=1800',
'--mixed_precision=fp16',
], shell=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
# ABONDED, THIS IS FOR LORA
# subprocess.run([
# 'accelerate', 'launch', './diffusers/examples/dreambooth/train_dreambooth_lora.py',
# '--pretrained_model_name_or_path=' + os.environ['MODEL_NAME'],
# '--instance_data_dir=' + os.environ['INSTANCE_DIR'],
# '--output_dir=' + lora_model_path,
# '--instance_prompt=' + text_prompt,
# '--resolution=256',
# '--train_batch_size=1',
# '--gradient_accumulation_steps=1',
# '--checkpointing_steps=100',
# '--learning_rate=1e-4',
# '--lr_scheduler=constant',
# '--lr_warmup_steps=0',
# '--max_train_steps=500',
# '--validation_prompt=' + text_prompt,
# '--validation_epochs=50',
# '--seed=0'
# ])
print('dreambooth training is time consuming, please wait for a while, or you can use the pretrained model')
for line in process.stdout:
print(line, end='')
process.wait()
print('finished finetune')
unet = UNet2DConditionModel.from_pretrained(os.environ['OUTPUT_DIR']+'/unet', torch_dtype=torch.float16)
pipe.unet = unet
def image_synthesis(path_src_img, path_ref_img, text_prompt, save_path, mask_obj_name, ref_obj_name):
image = load_image(path_src_img)
canny_image = load_image(path_ref_img)
pipe.to(device)
generator = torch.manual_seed(12345)
torch.cuda.empty_cache()
# Note that the image size should be as close as possible to the size of the original image, otherwise the generated image will be blurred.
image = Image.fromarray(cv2.resize(np.array(image), (512,512)))
canny_image = Image.fromarray(cv2.resize(np.array(canny_image), (512,512)))
mask_image, boxes, shape_mask_image= bbox(image, mask_obj_name)
canny_image.save("./tmp/tmp_ori_canny_image.png")
# get the bbox number of the mask, when then is only one box
x1, y1, x2, y2 = boxes[0]
print(" boxes[0]", boxes[0])
mask_image_2, boxes_2, shape_mask_image_2 = bbox(canny_image, ref_obj_name)
x1_2, y1_2, x2_2, y2_2 = boxes_2[0]
# adjust the canny image, so that the bbox of the mask is the same as the bbox of the canny image
canny_image = np.array(canny_image)
color_image = canny_image
shape_mask_image = np.array(shape_mask_image)
shape_mask_image_2 = np.array(shape_mask_image_2)
# Note you may need to adjust the threshold according to your images' category
low_threshold = 50#50#50 #100
high_threshold = 150#150 #200
canny_image = cv2.Canny(canny_image, low_threshold, high_threshold)
canny_image = canny_image[:, :, None]
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
canny_object = canny_image[y1_2.item():y2_2.item(),x1_2.item():x2_2.item(),:]
color_object = color_image[y1_2.item():y2_2.item(),x1_2.item():x2_2.item(),:]
shape_mask_image_2 = shape_mask_image_2[y1_2.item():y2_2.item(),x1_2.item():x2_2.item(),:]
# When transforming, fill the top or left and right, it is enough, don't stretch, keep the aspect ratio
length_height_ratio = (y2.item()-y1.item())/(x2.item()-x1.item())
canny_length_height_ratio = (y2_2.item()-y1_2.item())/(x2_2.item()-x1_2.item())
if length_height_ratio > canny_length_height_ratio:
# fill top
y_should = (x2_2.item()-x1_2.item())*length_height_ratio - (y2_2.item()-y1_2.item())
canny_object = np.concatenate([np.zeros((int(y_should),canny_object.shape[1],3)),canny_object],axis=0)
color_object = np.concatenate([np.zeros((int(y_should),color_object.shape[1],3)),color_object],axis=0)
shape_mask_image_2 = np.concatenate([np.zeros((int(y_should),shape_mask_image_2.shape[1],3)),shape_mask_image_2],axis=0)
else:
# fill left and right
x_should = (y2_2.item()-y1_2.item())/length_height_ratio - (x2_2.item()-x1_2.item())
canny_object = np.concatenate([np.zeros((canny_object.shape[0],int(x_should/2),3)),canny_object,np.zeros((canny_object.shape[0],int(x_should/2),3))],axis=1)
color_object = np.concatenate([np.zeros((color_object.shape[0],int(x_should/2),3)),color_object,np.zeros((color_object.shape[0],int(x_should/2),3))],axis=1)
shape_mask_image_2 = np.concatenate([np.zeros((shape_mask_image_2.shape[0],int(x_should/2),3)),shape_mask_image_2,np.zeros((shape_mask_image_2.shape[0],int(x_should/2),3))],axis=1)
canny_object = cv2.resize(canny_object,(x2.item()-x1.item(),y2.item()-y1.item()))
color_object = cv2.resize(color_object,(x2.item()-x1.item(),y2.item()-y1.item()))
shape_mask_image_2 = cv2.resize(shape_mask_image_2,(x2.item()-x1.item(),y2.item()-y1.item()))
canny_image = np.zeros_like(image)
canny_image[y1.item():y2.item(),x1.item():x2.item(),:] = canny_object
canny_image = Image.fromarray(canny_image)
color_image = np.zeros_like(image)
color_image[y1.item():y2.item(),x1.item():x2.item(),:] = color_object
color_image = Image.fromarray(color_image)
shape_image = np.zeros_like(image)
shape_image[y1.item():y2.item(),x1.item():x2.item(),:] = shape_mask_image_2
shape_mask_image_1_ori = shape_mask_image
shape_mask_image_1_ori = Image.fromarray(np.array(shape_mask_image_1_ori))
shape_mask_image_2_ori = shape_image
shape_mask_image_2_ori = Image.fromarray(np.array(shape_mask_image_2_ori))
# STAGE 1: PURE INPAINT
mid_pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
).to(device)
mid_image = mid_pipe(
prompt= "Remove anything, empty, clean", #"floor and wall",
negative_prompt = text_prompt,
num_inference_steps=20,
generator=generator,
image=image,
mask_image= mask_image #shape_mask_image
).images[0]
mid_image.save("./tmp/tmp_mid_image2.png")
ori_mid_image = mid_image
mid_image = cv2.resize(np.array(mid_image), (color_image.size[0],color_image.size[1]))
color_image = np.array(color_image)
# shape_mask_image_2_ori is a [512,512,3] image
for i in range(color_image.shape[0]):
for j in range(color_image.shape[1]):
if shape_image[i,j,0] == 0 and shape_image[i,j,1] == 0 and shape_image[i,j,2] == 0:
color_image[i,j,:] =[mid_image[i,j,:][0],mid_image[i,j,:][1],mid_image[i,j,:][2]]
color_image = Image.fromarray(color_image)
mask_image.save("./tmp/tmp_mask_image.png")
ori_mid_image.save("./tmp/tmp_mid_image_0927.png")
shape_mask_image_2_ori.save("./tmp/tmp_shape_mask_image_2_ori_0927.png")
canny_image.save("./tmp/tmp_canny_image.png")
color_image.save("./tmp/tmp_color_image.png")
if TWO_STAGE:
new_image = pipe(
text_prompt,
num_inference_steps=50, #50,#50, #20,
generator=generator,
image= ori_mid_image,#image,
control_image=[canny_image,color_image],
mask_image=shape_mask_image_2_ori, #mask_image,
guess_mode = False,
controlnet_conditioning_scale =[0.2,0.1],
guidance_scale=15.5,
strength=1.2
).images[0]
else:
new_image = pipe(
text_prompt,
num_inference_steps=50, #50,#50, #20,
generator=generator,
image= image,
control_image=[canny_image,color_image],
mask_image=mask_image,
guess_mode = False,
controlnet_conditioning_scale =[0.3,0.1], # You need to adjust this parameter according to the performance of generated images
guidance_scale=15.5,# Larger will make the generated image more similar to the reference image, 15 pr more is recommended.
strength=1.2 # Must be larger than 1 to get enough denoise effect: https://www.bilibili.com/read/cv19739185/
).images[0]
new_image.save(save_path)
return new_image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--path_src_img', type=str, default="./imgs/sofa_set/sofa_bg_f2.png")
parser.add_argument('--path_ref_img', type=str, default="./imgs/synthesized_imgs/sofa_1_a/0_20.png")
parser.add_argument('--text_prompt', type=str, default="sofa_1_a")
parser.add_argument('--save_path', type=str, default="./tmp/tmp_result.png")
parser.add_argument('--mask_obj_name', type=str, default="sofa")
parser.add_argument('--ref_obj_name', type=str, default="sofa")
parser.add_argument('--dreambooth', type=bool, default=True)
parser.add_argument('--device', type=str, default="cuda:0")
args = parser.parse_args()
text_prompt = "A sks " + args.text_prompt
NAME = args.text_prompt
os.environ['MODEL_NAME'] = "runwayml/stable-diffusion-inpainting"
os.environ['INSTANCE_DIR'] = "./imgs/synthesized_imgs/" + NAME + "/"
os.environ['OUTPUT_DIR'] = "./models/"+NAME
os.environ['TEXT_PROMPT'] = "a photo of sks " + NAME # Some times you may need to change this to get better results, for example, it is a couch with wooden legs." #, it is a couch with a gray fabric covering on it" #"pure white sks teapot"#"green sks A_green_couch" #"One blue sks A_blue_tea_kettle on an indoor floor"
# os.environ['CLASS_PROMPT'] = NAME.split("_")[0]
dreambooth = args.dreambooth
device = args.device
TWO_STAGE = False #True
controlnet = [ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16),
ControlNetModel.from_pretrained('lllyasviel/control_v11f1e_sd15_tile', torch_dtype=torch.float16),
]
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16, safety_checker=None
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
if dreambooth:
train_dreambooth(pipe)
image_synthesis(args.path_src_img, args.path_ref_img, text_prompt, args.save_path, args.mask_obj_name, args.ref_obj_name)