forked from Isilon/isilon_data_insights_connector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
isi_data_insights_daemon.py
847 lines (710 loc) · 33.3 KB
/
isi_data_insights_daemon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
import gevent
import gevent.pool
from daemons.prefab import run
from ast import literal_eval
import logging
import sys
import time
import urllib3.exceptions
from isi_stats_client import IsiStatsClient
MAX_ASYNC_QUERIES = 20
LOG = logging.getLogger(__name__)
class ClusterConfig(object):
def __init__(self,
address, name, version, isi_sdk, api_client):
self.address = address
self.name = name
self.version = version
self.isi_sdk = isi_sdk
self.api_client = api_client
def __eq__(self, other):
"""
Override __eq__ so that we can store this in a list and check for its
existence.
"""
return self.address == other.address
def __hash__(self):
"""
Override __hash__ so that we can store this in a dict.
"""
return hash(str(self))
def __repr__(self):
return self.name
class DerivedStatsProcessor(object):
def __init__(self, derived_stat_computers):
self._derived_stat_computers = derived_stat_computers
def begin_process(self, cluster_name):
for derived_stat_computer in self._derived_stat_computers:
derived_stat_computer.begin_process(cluster_name)
def select_stat(self, stat):
for derived_stat_computer in self._derived_stat_computers:
derived_stat_computer.select_stat(stat)
def end_process(self, cluster_name):
for derived_stat_computer in self._derived_stat_computers:
derived_stat_computer.end_process(cluster_name)
def stats(self):
for derived_stat_computer in self._derived_stat_computers:
yield derived_stat_computer
class DerivedStatComputer(object):
def __init__(self, out_stat_name):
self._initialize()
self.out_stat_name = out_stat_name
def _initialize(self):
self._selected_stat_timestamps = {}
self._selected_stat_errors = {}
def begin_process(self, cluster_name):
self._initialize()
def end_process(self, cluster_name):
pass
def process(self, stat):
pass
def _choose_stat(self, stat):
LOG.debug("Choose stat: %s", stat.key)
try:
self._selected_stat_timestamps[stat.devid].append(long(stat.time))
except KeyError:
self._selected_stat_timestamps[stat.devid] = [long(stat.time)]
def _create_derived_stat(self, value, devid=0, error=None):
class DerivedStat(object):
""" Pretend to be a Stat returned by PAPI """
def __init__(self, key, val, node, timestamp, err):
self.key = key
self.value = val
self.devid = node
self.time = timestamp
self.error = err
self.error_code = \
None if error is None else 1
avg_timestamp = 0
if error is not None:
try:
avg_timestamp = self._get_timestamp_avg(devid)
except ZeroDivisionError:
error = "Caught ZeroDivisionError from _get_timestamp_avg " \
"for stat %s on node %s." \
% (self.out_stat_name, str(devid))
return DerivedStat(
self.out_stat_name, value, devid,
avg_timestamp, error)
def _get_timestamp_avg(self, devid):
if devid not in self._selected_stat_timestamps and devid == 0:
tot = 0
tot_count = 0
for node in self._selected_stat_timestamps:
tot += sum(self._selected_stat_timestamps[node])
tot_count += len(self._selected_stat_timestamps[node])
return long(tot / tot_count)
return long(sum(self._selected_stat_timestamps[devid])
/ len(self._selected_stat_timestamps[devid]))
class DerivedStatInput(object):
def __init__(self, stat_name, stat_fields=()):
self.name = stat_name
if stat_fields and len(stat_fields) > 0:
self._stat_fields = stat_fields
else:
self._stat_fields = None
def _lookup(self, stat_value, field, *fields):
if fields:
# if stat_value is not a dict or list then this will raise
# exception, which is what we want it to do.
if type(stat_value) == dict:
return self._lookup(stat_value.get(field, {}), *fields)
else:
return self._lookup(stat_value[field], *fields)
return stat_value.get(field)
def get_value(self, stat_value):
if self._stat_fields is not None:
# PAPI has a weird habit of putting stats that have only 1 value
# into a list. When that happens we just ignore the list
if type(stat_value) == list:
num_items = len(stat_value)
if num_items == 1:
stat_value = stat_value[0]
elif num_items == 0:
return None
return self._lookup(stat_value, *self._stat_fields)
return stat_value
@property
def full_name(self):
return self._get_full_name(self.name)
def _get_full_name(self, stat_name):
if self._stat_fields is not None:
full_name = stat_name
full_name += ":"
full_name += ":".join(self._stat_fields)
else:
full_name = stat_name
return full_name
class ClusterCompositeStatComputer(DerivedStatComputer):
def __init__(self, input_stat, out_stat_name, operation):
super(ClusterCompositeStatComputer, self).__init__(out_stat_name)
self._input_stat = input_stat
self._operation = operation
def _initialize(self):
super(ClusterCompositeStatComputer, self)._initialize()
self._selected_stat_values = []
def select_stat(self, stat):
if stat.key == self._input_stat.name:
self._selected_stat_values.append(
self._input_stat.get_value(stat.value))
self._choose_stat(stat)
def compute_derived_stat(self):
LOG.debug("CCSC %s(%s)",
str(self._operation.__name__), str(self._selected_stat_values))
return self._create_derived_stat(
self._operation(self._selected_stat_values))
class EquationStatComputer(DerivedStatComputer):
def __init__(self, eq_func, input_stats, out_stat_name):
super(EquationStatComputer, self).__init__(out_stat_name)
self._eq_func = eq_func
self._num_func_args = len(input_stats)
self._input_stats = input_stats
self._input_stats_names = {}
self._input_stat_locations = {}
for index in range(0, self._num_func_args):
input_stat = self._input_stats[index]
# setup mapping from base stat name to input_stat
try:
# there might be multiple fields from a single stat with this
# name so we need to keep a list of input_stats
self._input_stats_names[input_stat.name].append(input_stat)
except KeyError:
self._input_stats_names[input_stat.name] = [input_stat]
# setup mapping from name to location(s) in the equation
try:
self._input_stat_locations[input_stat.full_name].append(index)
except KeyError:
self._input_stat_locations[input_stat.full_name] = [index]
def _initialize(self):
super(EquationStatComputer, self)._initialize()
self._selected_stat_values = {}
self._nodes = set()
def select_stat(self, stat):
# check if this stat is included in this equation
try:
input_stats = self._input_stats_names[stat.key]
# if there is an entry for this stat then it is part of my equation
self._choose_stat(stat)
self._nodes.add(stat.devid)
except KeyError:
return
for input_stat in input_stats:
try:
selected_stats_by_node = \
self._selected_stat_values[input_stat.full_name]
except KeyError:
self._selected_stat_values[input_stat.full_name] = {}
selected_stats_by_node = \
self._selected_stat_values[input_stat.full_name]
try:
selected_stats_by_node[stat.devid] = \
input_stat.get_value(stat.value)
except KeyError:
selected_stats_by_node = {}
selected_stats_by_node[stat.devid] = \
input_stat.get_value(stat.value)
def compute_derived_stats(self):
# return one derived stat per node that the selected stats were
# collected for.
derived_stats = []
for node in self._nodes:
# for each node build a tuple of the args to the equation
# by iterating through the intput stat names
func_args = [None] * self._num_func_args
for in_stat_name in self._input_stat_locations.keys():
stat_node = node
if in_stat_name.startswith("cluster.") is True:
stat_node = 0 # this is a cluster stat
stat_value = self._get_stat_value(in_stat_name, stat_node)
in_arg_locations = self._input_stat_locations[in_stat_name]
for in_arg_loc in in_arg_locations:
func_args[in_arg_loc] = stat_value
# if there is at least one non-None arg then convert the Nones to
# zero and try to do the computation. If all are None then skip it.
if self._null_to_zero(func_args) is False:
# failed to get this stat, so return error for it
derived_stat = \
self._create_derived_stat(None, node,
"Failed to get equation input for %s, " \
"input params: %s." % \
(self.out_stat_name, tuple(func_args)))
else:
try:
func_args_tuple = tuple(func_args)
LOG.debug("EQS [%s]=%s(%s)",
str(node), str(self._eq_func), str(func_args_tuple))
derived_stat_value = self._eq_func(*func_args_tuple)
derived_stat = \
self._create_derived_stat(derived_stat_value, node)
except Exception as exception:
derived_stat = \
self._create_derived_stat(None, node,
error="Exception caught evaluating " \
"expression for %s, input " \
"params: %s, exception: %s" % \
(self.out_stat_name,
str(func_args_tuple),
str(exception)))
derived_stats.append(derived_stat)
return derived_stats
def _null_to_zero(self, func_args):
null_args = []
# since we don't know the type do some math to get zero in the correct
# data type from one of the non-zero values
zero = None
for aindex in range(0, self._num_func_args):
farg = func_args[aindex]
if farg is None:
null_args.append(aindex)
else:
zero = farg - farg
if len(null_args) == self._num_func_args:
# all the args are null so return False - we can't compute this
# equation
return False
# go back through and set null args to zero
for aindex in null_args:
func_args[aindex] = zero
return True
def _get_stat_value(self, stat_name, node):
try:
return self._selected_stat_values[stat_name][node]
except KeyError:
return None
class PercentChangeStatComputer(DerivedStatComputer):
def __init__(self, input_stat, out_stat_name):
super(PercentChangeStatComputer, self).__init__(out_stat_name)
self._input_stat = input_stat
# per node/cluster value
self._cur_values = {}
self._prev_values = {}
def begin_process(self, cluster_name):
super(PercentChangeStatComputer, self).begin_process(cluster_name)
self._cur_cluster_name = cluster_name
self._cur_values = {}
def end_process(self, cluster_name):
super(PercentChangeStatComputer, self).end_process(cluster_name)
self._prev_values[cluster_name] = self._cur_values
def select_stat(self, stat):
if stat.key == self._input_stat.name:
self._cur_values[stat.devid] = \
self._input_stat.get_value(stat.value)
self._choose_stat(stat)
def compute_derived_stats(self):
derived_stats = []
for node in self._cur_values:
try:
cur_value = self._cur_values[node]
except KeyError:
cur_value = None
if cur_value is None:
derived_stat = \
self._create_derived_stat(None, node,
error="Unable to determine current value " \
"of input stat: %s" \
% self._input_stat.full_name)
else:
try:
prev_values = self._prev_values[self._cur_cluster_name]
# TREAT no previous value as zero?
prev_value = prev_values[node]
LOG.debug("PCS [%s]=(%s / %s) - 1",
str(node), str(cur_value), str(prev_value))
try:
derived_stat_value = \
(float(cur_value) / float(prev_value)) - 1
except ZeroDivisionError:
if cur_value == 0 or cur_value == 0.0:
# prev_value and cur_value == 0
derived_stat_value = 0.0
else:
derived_stat_value = \
(float(prev_value) / float(cur_value)) - 1
derived_stat_value *= -1.0
derived_stat_value *= 100.0
except KeyError:
# no previous value will cause a KeyError
# so return 0% change
derived_stat_value = 0.0
derived_stat = \
self._create_derived_stat(derived_stat_value, node)
derived_stats.append(derived_stat)
return derived_stats
class StatsConfig(object):
def __init__(self, cluster_configs, stats, update_interval):
self.cluster_configs = cluster_configs
self.stats = stats
self.update_interval = update_interval
self.cluster_composite_stats = []
self.equation_stats = []
self.pct_change_stats = []
self.final_equation_stats = []
class StatSet(object):
def __init__(self):
self.cluster_configs = []
self.stats = set()
self.cluster_composite_stats = []
self.equation_stats = []
self.pct_change_stats = []
self.final_equation_stats = []
class UpdateInterval(object):
def __init__(self, interval):
self.interval = interval
self.last_update = 0.0
class IsiDataInsightsDaemon(run.RunDaemon):
"""
Periodically query a list of OneFS clusters for statistics and
process them via a configurable stats processor module.
"""
def __init__(self, pidfile):
"""
Initialize.
:param: pidfile is the path to the daemon's pidfile (required).
"""
super(IsiDataInsightsDaemon, self).__init__(pidfile=pidfile)
self._stat_sets = {}
self._update_intervals = []
self._stats_processor = None
self._stats_processor_args = None
self._process_stats_func = None
self.async_worker_pool = gevent.pool.Pool(MAX_ASYNC_QUERIES)
def set_stats_processor(self, stats_processor, processor_args):
self._stats_processor = stats_processor
self._stats_processor_args = processor_args
if hasattr(stats_processor, 'process_stat') is True:
self._process_stats_func = self._process_stats_with_derived_stats
self._init_derived_stats_processor()
elif hasattr(stats_processor, 'process') is True:
self._process_stats_func = self._process_all_stats
else:
raise AttributeError(
"Results processor module has no process() or " \
"process_stat() function.")
# start the stats processor module
if hasattr(self._stats_processor, 'start') is True:
# need to start the processor now before the process is daemonized
# in case the plugin needs to prompt the user for input prior to
# starting.
LOG.info("Starting stats processor.")
self._stats_processor.start(self._stats_processor_args)
def _init_derived_stats_processor(self):
# if the stats processor doesn't define begin_process or end_process,
# then add a noop version so we don't have to check each time we
# process stats
def noop(cluster_name):
pass
if hasattr(self._stats_processor, 'begin_process') is False:
self._stats_processor.begin_process = noop
if hasattr(self._stats_processor, 'end_process') is False:
self._stats_processor.end_process = noop
def add_stats(self, stats_config):
"""
Add set of stats to be queried.
:param: stats_config is an instance of StatsConfig, which defines the
list of stats, an update interval, and the list of clusters to query.
"""
try:
# organize the stat sets by update interval
stat_set = self._stat_sets[stats_config.update_interval]
except KeyError:
self._stat_sets[stats_config.update_interval] = stat_set = \
StatSet()
self._update_intervals.append(
UpdateInterval(stats_config.update_interval))
# add the new clusters to the list of clusters associated with this
# update interval's stat set.
for cluster in stats_config.cluster_configs:
if cluster not in stat_set.cluster_configs:
# TODO this is a bug - this causes these stats to be queried on
# all clusters in this update interval, not just the clusters
# defined in this stats_config
stat_set.cluster_configs.append(cluster)
# add the new stats to the stat set
for stat_name in stats_config.stats:
stat_set.stats.add(stat_name)
stat_set.cluster_composite_stats.extend(
stats_config.cluster_composite_stats)
stat_set.equation_stats.extend(stats_config.equation_stats)
stat_set.pct_change_stats.extend(stats_config.pct_change_stats)
stat_set.final_equation_stats.extend(stats_config.final_equation_stats)
def get_stat_set_count(self):
return len(self._stat_sets)
def get_next_stat_set(self):
for update_interval, stat_set in self._stat_sets.iteritems():
yield update_interval, stat_set
def run(self, debug=False):
"""
Loop through stat sets, query for their values, and process them with
the stats processor.
"""
LOG.info("Starting.")
sleep_secs = 0
start_time = time.time()
# setup the last update time of each update interval so that they all
# get updated on the first pass.
for update_interval in self._update_intervals:
update_interval.last_update = start_time - update_interval.interval
while True:
LOG.debug("Sleeping for %f seconds.", sleep_secs)
time.sleep(sleep_secs)
# query and process the stat sets whose update interval has been
# hit or surpassed.
self._query_and_process_stats(time.time(), debug)
cur_time = time.time()
# figure out the shortest amount of time until the next update is
# needed and sleep for that amount of time.
min_next_update = sys.float_info.max
for update_interval in self._update_intervals:
next_update_time = \
update_interval.last_update + update_interval.interval
time_to_next_update = next_update_time - cur_time
min_next_update = min(time_to_next_update, min_next_update)
sleep_secs = max(0.0, min_next_update)
def shutdown(self, signum):
"""
Stops the stats processor prior to stopping the daemon.
"""
LOG.info("Stopping.")
if self._stats_processor is not None \
and hasattr(self._stats_processor, 'stop') is True:
LOG.info("Stopping stats processor.")
self._stats_processor.stop()
super(IsiDataInsightsDaemon, self).shutdown(signum)
def _query_and_process_stats(self, cur_time, debug):
"""
Build a unique set of stats to update per cluster from each set of
stats that are in need of updating based on the amount of time elapsed
since their last update.
"""
# there might be more than one stat set that needs updating and thus
# there might be common clusters between those stat sets, so this loop
# makes sure that we only send one query to each unique cluster.
cluster_stats = {}
for update_interval in self._update_intervals:
# if the update_interval is less than or equal to the elapsed_time
# then we need to query the stats associated with this update
# interval.
time_since_last_update = cur_time - update_interval.last_update
if time_since_last_update >= update_interval.interval:
LOG.debug("updating interval:%d time_since_last_update: %f",
update_interval.interval, time_since_last_update)
# update the last_update time
update_interval.last_update = cur_time
# add the stats from stat set to their respective cluster_stats
cur_stat_set = self._stat_sets[update_interval.interval]
for cluster in cur_stat_set.cluster_configs:
try:
(cluster_stat_set,
cluster_composite_stats,
equation_stats,
pct_change_stats,
final_equation_stats) = \
cluster_stats[cluster]
cluster_composite_stats.extend(
cur_stat_set.cluster_composite_stats)
equation_stats.extend(
cur_stat_set.equation_stats)
pct_change_stats.extend(
cur_stat_set.pct_change_stats)
final_equation_stats.extend(
cur_stat_set.final_equation_stats)
except KeyError:
cluster_stat_set = set()
cluster_stats[cluster] = (
cluster_stat_set,
cur_stat_set.cluster_composite_stats,
cur_stat_set.equation_stats,
cur_stat_set.pct_change_stats,
cur_stat_set.final_equation_stats)
for stat_name in cur_stat_set.stats:
cluster_stat_set.add(stat_name)
# now we have a unique list of clusters to query, so query them
for cluster, (stats,
composite_stats, eq_stats,
pct_change_stats, final_eq_stats) in cluster_stats.iteritems():
self.async_worker_pool.spawn(
self._query_and_process_stats1, cluster, stats,
composite_stats, eq_stats,
pct_change_stats, final_eq_stats)
self.async_worker_pool.join()
def _query_and_process_stats1(self, cluster, stats, composite_stats,
eq_stats, pct_change_stats, final_eq_stats):
LOG.debug("Querying cluster %s %f", cluster.name, cluster.version)
LOG.debug("Querying stats %d.", len(stats))
stats_client = \
IsiStatsClient(
cluster.isi_sdk.StatisticsApi(cluster.api_client))
# query the current cluster with the current set of stats
try:
if cluster.version >= 8.0:
results = stats_client.query_stats(stats)
else:
results = \
self._v7_2_multistat_query(
stats, stats_client)
except (urllib3.exceptions.HTTPError,
cluster.isi_sdk.rest.ApiException) as http_exc:
LOG.error("Failed to query stats from cluster %s, exception "\
"raised: %s", cluster.name, str(http_exc))
return
except Exception as gen_exc:
# if in debug mode then re-raise general Exceptions because
# they are most likely bugs in the code, but in non-debug mode
# just continue
if debug is False:
LOG.error("Failed to query stats from cluster %s, exception "\
"raised: %s", cluster.name, str(gen_exc))
return
else:
raise gen_exc
composite_stats_processor = \
DerivedStatsProcessor(composite_stats)
equation_stats_processor = \
DerivedStatsProcessor(eq_stats)
pct_change_stats_processor = \
DerivedStatsProcessor(pct_change_stats)
final_equation_stats_processor = \
DerivedStatsProcessor(final_eq_stats)
derived_stats_processors = \
(composite_stats_processor,
equation_stats_processor,
pct_change_stats_processor,
final_equation_stats_processor)
# calls either _process_all_stats or
# _process_stats_with_derived_stats depending on whether or not the
# _stats_processor has a process_stat function or just a process
# function. The latter requires the process_stat function.
self._process_stats_func(
cluster.name, results, derived_stats_processors)
def _v7_2_multistat_query(self, stats, stats_client):
result = []
for stat in stats:
result.extend(stats_client.query_stat(stat))
return result
def _process_all_stats(self, *args):
cluster_name = args[0]
results = args[1]
# the initial version of the stats processor plugin processed all stats
# at once, this function allows backwards compatibility, but derived
# stats are not supported
self._stats_processor.process(cluster_name, results)
def _process_stats_with_derived_stats(
self, cluster_name, stats_query_results, derived_stats):
LOG.debug("Processing stat results on %s", cluster_name)
self._stats_processor.begin_process(cluster_name)
(cluster_composite_stats,
equation_stats,
pct_change_stats,
final_equation_stats) = derived_stats
cluster_composite_stats.begin_process(cluster_name)
equation_stats.begin_process(cluster_name)
pct_change_stats.begin_process(cluster_name)
final_equation_stats.begin_process(cluster_name)
# process the results
for stat in stats_query_results:
# check if the stat query returned an error
if stat.error is not None:
LOG.warning("Query for stat: '%s' on '%s', returned error: '%s'.",
str(stat.key), cluster_name, str(stat.error))
continue
self._prep_stat(stat)
# let stats processor process it
self._stats_processor.process_stat(cluster_name, stat)
# allow derived stats to select/use this stat
cluster_composite_stats.select_stat(stat)
equation_stats.select_stat(stat)
pct_change_stats.select_stat(stat)
final_equation_stats.select_stat(stat)
LOG.debug("Processing composite stats on %s", cluster_name)
for composite_stat in cluster_composite_stats.stats():
# composite stats always return only one derived stat
derived_stat = composite_stat.compute_derived_stat()
if derived_stat.error is not None:
LOG.warning("Cluster node composite stat: " \
"'%s' on '%s', returned error: '%s'.",
str(derived_stat.key),
cluster_name,
str(derived_stat.error))
continue
LOG.debug("ClusterCompositeStat[%s]=%s",
derived_stat.key, str(derived_stat.value))
# let stats processor process it
self._stats_processor.process_stat(cluster_name, derived_stat)
# allow derived stats to select/use this stat
equation_stats.select_stat(derived_stat)
pct_change_stats.select_stat(derived_stat)
final_equation_stats.select_stat(derived_stat)
LOG.debug("Processing equation stats on %s", cluster_name)
for eq_stat in equation_stats.stats():
# equation stats might produce more than one derived stat,
# potentially one stat per node
derived_stats = eq_stat.compute_derived_stats()
for derived_stat in derived_stats:
if derived_stat.error is not None:
LOG.warning("Equation computed stat: " \
"'%s' on '%s', returned error: '%s'.",
str(derived_stat.key),
cluster_name,
str(derived_stat.error))
continue
LOG.debug("EquationStat[%s]=%s",
derived_stat.key, str(derived_stat.value))
# let stats processor process them
self._stats_processor.process_stat(cluster_name, derived_stat)
# allow derived stats to select/use this stat
pct_change_stats.select_stat(derived_stat)
final_equation_stats.select_stat(derived_stat)
LOG.debug("Processing percent change stats on %s", cluster_name)
for pct_change_stat in pct_change_stats.stats():
# percent change stats might produce more than one derived stat,
# potentially one stat per node
derived_stats = pct_change_stat.compute_derived_stats()
for derived_stat in derived_stats:
if derived_stat.error is not None:
LOG.warning("Percent change stat: " \
"'%s' on '%s', returned error: '%s'.",
str(derived_stat.key),
cluster_name,
str(derived_stat.error))
continue
LOG.debug("PercentChangeStat[%s]=%s",
derived_stat.key, str(derived_stat.value))
# let stats processor process it
self._stats_processor.process_stat(cluster_name, derived_stat)
# allow derived stats to select/use this stat
final_equation_stats.select_stat(derived_stat)
LOG.debug("Processing final equation stats on %s", cluster_name)
for eq_stat in final_equation_stats.stats():
# equation stats might produce more than one derived stat,
# potentially one stat per node
derived_stats = eq_stat.compute_derived_stats()
for derived_stat in derived_stats:
if derived_stat.error is not None:
LOG.warning("Final equation computed stat: " \
"'%s' on '%s', returned error: '%s'.",
str(derived_stat.key),
cluster_name,
str(derived_stat.error))
continue
LOG.debug("FinalEquationStat[%s]=%s",
derived_stat.key, str(derived_stat.value))
# let stats processor process them
self._stats_processor.process_stat(cluster_name, derived_stat)
self._stats_processor.end_process(cluster_name)
cluster_composite_stats.end_process(cluster_name)
equation_stats.end_process(cluster_name)
pct_change_stats.end_process(cluster_name)
final_equation_stats.end_process(cluster_name)
def _prep_stat(self, stat):
try:
# the stat value's data type is variable depending on the key so
# use literal_eval() to convert it to the correct type
eval_value = literal_eval(stat.value)
# convert tuples to a list for simplicity
if type(eval_value) == tuple:
stat.value = list(eval_value)
else:
stat.value = eval_value
except Exception: # if literal_eval throws an exception
# then just leave it as string value
pass