forked from jingtaozhan/DRhard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
218 lines (186 loc) · 9.24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import enum
import sys
from torch._C import dtype
sys.path += ['./']
import torch
from torch import nn
import transformers
if int(transformers.__version__[0]) <=3:
from transformers.modeling_roberta import RobertaPreTrainedModel
else:
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel
from transformers import RobertaModel
import torch.nn.functional as F
from torch.cuda.amp import autocast
class EmbeddingMixin:
"""
Mixin for common functions in most embedding models. Each model should define its own bert-like backbone and forward.
We inherit from RobertaModel to use from_pretrained
"""
def __init__(self, model_argobj):
if model_argobj is None:
self.use_mean = False
else:
self.use_mean = model_argobj.use_mean
print("Using mean:", self.use_mean)
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=0.02)
def masked_mean(self, t, mask):
s = torch.sum(t * mask.unsqueeze(-1).float(), axis=1)
d = mask.sum(axis=1, keepdim=True).float()
return s / d
def masked_mean_or_first(self, emb_all, mask):
# emb_all is a tuple from bert - sequence output, pooler
assert isinstance(emb_all, tuple)
if self.use_mean:
return self.masked_mean(emb_all[0], mask)
else:
return emb_all[0][:, 0]
def query_emb(self, input_ids, attention_mask):
raise NotImplementedError("Please Implement this method")
def body_emb(self, input_ids, attention_mask):
raise NotImplementedError("Please Implement this method")
class BaseModelDot(EmbeddingMixin):
def _text_encode(self, input_ids, attention_mask):
# TODO should raise NotImplementedError
# temporarily do this
return None
def query_emb(self, input_ids, attention_mask):
outputs1 = self._text_encode(input_ids=input_ids,
attention_mask=attention_mask)
full_emb = self.masked_mean_or_first(outputs1, attention_mask)
query1 = self.norm(self.embeddingHead(full_emb))
return query1
def body_emb(self, input_ids, attention_mask):
return self.query_emb(input_ids, attention_mask)
def forward(self, input_ids, attention_mask, is_query, *args):
assert len(args) == 0
if is_query:
return self.query_emb(input_ids, attention_mask)
else:
return self.body_emb(input_ids, attention_mask)
class RobertaDot(BaseModelDot, RobertaPreTrainedModel):
def __init__(self, config, model_argobj=None):
BaseModelDot.__init__(self, model_argobj)
RobertaPreTrainedModel.__init__(self, config)
if int(transformers.__version__[0]) ==4 :
config.return_dict = False
self.roberta = RobertaModel(config, add_pooling_layer=False)
if hasattr(config, "output_embedding_size"):
self.output_embedding_size = config.output_embedding_size
else:
self.output_embedding_size = config.hidden_size
print("output_embedding_size", self.output_embedding_size)
self.embeddingHead = nn.Linear(config.hidden_size, self.output_embedding_size)
self.norm = nn.LayerNorm(self.output_embedding_size)
self.apply(self._init_weights)
def _text_encode(self, input_ids, attention_mask):
outputs1 = self.roberta(input_ids=input_ids,
attention_mask=attention_mask)
return outputs1
class RobertaDot_InBatch(RobertaDot):
def forward(self, input_query_ids, query_attention_mask,
input_doc_ids, doc_attention_mask,
other_doc_ids=None, other_doc_attention_mask=None,
rel_pair_mask=None, hard_pair_mask=None):
return inbatch_train(self.query_emb, self.body_emb,
input_query_ids, query_attention_mask,
input_doc_ids, doc_attention_mask,
other_doc_ids, other_doc_attention_mask,
rel_pair_mask, hard_pair_mask)
class RobertaDot_Rand(RobertaDot):
def forward(self, input_query_ids, query_attention_mask,
input_doc_ids, doc_attention_mask,
other_doc_ids=None, other_doc_attention_mask=None,
rel_pair_mask=None, hard_pair_mask=None):
return randneg_train(self.query_emb, self.body_emb,
input_query_ids, query_attention_mask,
input_doc_ids, doc_attention_mask,
other_doc_ids, other_doc_attention_mask,
hard_pair_mask)
def inbatch_train(query_encode_func, doc_encode_func,
input_query_ids, query_attention_mask,
input_doc_ids, doc_attention_mask,
other_doc_ids=None, other_doc_attention_mask=None,
rel_pair_mask=None, hard_pair_mask=None):
query_embs = query_encode_func(input_query_ids, query_attention_mask)
doc_embs = doc_encode_func(input_doc_ids, doc_attention_mask)
batch_size = query_embs.shape[0]
with autocast(enabled=False):
batch_scores = torch.matmul(query_embs, doc_embs.T)
# print("batch_scores", batch_scores)
single_positive_scores = torch.diagonal(batch_scores, 0)
# print("positive_scores", positive_scores)
positive_scores = single_positive_scores.reshape(-1, 1).repeat(1, batch_size).reshape(-1)
if rel_pair_mask is None:
rel_pair_mask = 1 - torch.eye(batch_size, dtype=batch_scores.dtype, device=batch_scores.device)
# print("mask", mask)
batch_scores = batch_scores.reshape(-1)
logit_matrix = torch.cat([positive_scores.unsqueeze(1),
batch_scores.unsqueeze(1)], dim=1)
# print(logit_matrix)
lsm = F.log_softmax(logit_matrix, dim=1)
loss = -1.0 * lsm[:, 0] * rel_pair_mask.reshape(-1)
# print(loss)
# print("\n")
first_loss, first_num = loss.sum(), rel_pair_mask.sum()
if other_doc_ids is None:
return (first_loss/first_num,)
# other_doc_ids: batch size, per query doc, length
other_doc_num = other_doc_ids.shape[0] * other_doc_ids.shape[1]
other_doc_ids = other_doc_ids.reshape(other_doc_num, -1)
other_doc_attention_mask = other_doc_attention_mask.reshape(other_doc_num, -1)
other_doc_embs = doc_encode_func(other_doc_ids, other_doc_attention_mask)
with autocast(enabled=False):
other_batch_scores = torch.matmul(query_embs, other_doc_embs.T)
other_batch_scores = other_batch_scores.reshape(-1)
positive_scores = single_positive_scores.reshape(-1, 1).repeat(1, other_doc_num).reshape(-1)
other_logit_matrix = torch.cat([positive_scores.unsqueeze(1),
other_batch_scores.unsqueeze(1)], dim=1)
# print(logit_matrix)
other_lsm = F.log_softmax(other_logit_matrix, dim=1)
other_loss = -1.0 * other_lsm[:, 0]
# print(loss)
# print("\n")
if hard_pair_mask is not None:
hard_pair_mask = hard_pair_mask.reshape(-1)
other_loss = other_loss * hard_pair_mask
second_loss, second_num = other_loss.sum(), hard_pair_mask.sum()
else:
second_loss, second_num = other_loss.sum(), len(other_loss)
return ((first_loss+second_loss)/(first_num+second_num),)
def randneg_train(query_encode_func, doc_encode_func,
input_query_ids, query_attention_mask,
input_doc_ids, doc_attention_mask,
other_doc_ids=None, other_doc_attention_mask=None,
hard_pair_mask=None):
query_embs = query_encode_func(input_query_ids, query_attention_mask)
doc_embs = doc_encode_func(input_doc_ids, doc_attention_mask)
with autocast(enabled=False):
batch_scores = torch.matmul(query_embs, doc_embs.T)
single_positive_scores = torch.diagonal(batch_scores, 0)
# other_doc_ids: batch size, per query doc, length
other_doc_num = other_doc_ids.shape[0] * other_doc_ids.shape[1]
other_doc_ids = other_doc_ids.reshape(other_doc_num, -1)
other_doc_attention_mask = other_doc_attention_mask.reshape(other_doc_num, -1)
other_doc_embs = doc_encode_func(other_doc_ids, other_doc_attention_mask)
with autocast(enabled=False):
other_batch_scores = torch.matmul(query_embs, other_doc_embs.T)
other_batch_scores = other_batch_scores.reshape(-1)
positive_scores = single_positive_scores.reshape(-1, 1).repeat(1, other_doc_num).reshape(-1)
other_logit_matrix = torch.cat([positive_scores.unsqueeze(1),
other_batch_scores.unsqueeze(1)], dim=1)
# print(logit_matrix)
other_lsm = F.log_softmax(other_logit_matrix, dim=1)
other_loss = -1.0 * other_lsm[:, 0]
if hard_pair_mask is not None:
hard_pair_mask = hard_pair_mask.reshape(-1)
other_loss = other_loss * hard_pair_mask
second_loss, second_num = other_loss.sum(), hard_pair_mask.sum()
else:
second_loss, second_num = other_loss.sum(), len(other_loss)
return (second_loss/second_num,)