-
Notifications
You must be signed in to change notification settings - Fork 39
/
train.py
executable file
·580 lines (471 loc) · 25.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import numpy as np
import subprocess
cmd = 'nvidia-smi -q -d Memory |grep -A4 GPU|grep Used'
result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.decode().split('\n')
os.environ['CUDA_VISIBLE_DEVICES']=str(np.argmin([int(x.split()[2]) for x in result[:-1]]))
os.system('echo $CUDA_VISIBLE_DEVICES')
import torch
import torchvision
import json
import wandb
import time
from os import makedirs
import shutil
from pathlib import Path
from PIL import Image
import torchvision.transforms.functional as tf
import lpips
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import prefilter_voxel, render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
# torch.set_num_threads(32)
lpips_fn = lpips.LPIPS(net='vgg').to('cuda')
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
print("found tf board")
except ImportError:
TENSORBOARD_FOUND = False
print("not found tf board")
def saveRuntimeCode(dst: str) -> None:
additionalIgnorePatterns = ['.git', '.gitignore']
ignorePatterns = set()
ROOT = '.'
with open(os.path.join(ROOT, '.gitignore')) as gitIgnoreFile:
for line in gitIgnoreFile:
if not line.startswith('#'):
if line.endswith('\n'):
line = line[:-1]
if line.endswith('/'):
line = line[:-1]
ignorePatterns.add(line)
ignorePatterns = list(ignorePatterns)
for additionalPattern in additionalIgnorePatterns:
ignorePatterns.append(additionalPattern)
log_dir = Path(__file__).resolve().parent
shutil.copytree(log_dir, dst, ignore=shutil.ignore_patterns(*ignorePatterns))
print('Backup Finished!')
def training(dataset, opt, pipe, dataset_name, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, wandb=None, logger=None, ply_path=None):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(
dataset.feat_dim, dataset.n_offsets, dataset.fork, dataset.use_feat_bank, dataset.appearance_dim,
dataset.add_opacity_dist, dataset.add_cov_dist, dataset.add_color_dist, dataset.add_level,
dataset.visible_threshold, dataset.dist2level, dataset.base_layer, dataset.progressive, dataset.extend
)
scene = Scene(dataset, gaussians, ply_path=ply_path, shuffle=False, logger=logger, resolution_scales=dataset.resolution_scales)
gaussians.training_setup(opt)
gaussians.set_coarse_interval(opt.coarse_iter, opt.coarse_factor)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
# network gui not available in octree-gs yet
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
if dataset.random_background:
bg_color = [np.random.random(),np.random.random(),np.random.random()]
elif dataset.white_background:
bg_color = [1.0, 1.0, 1.0]
else:
bg_color = [0.0, 0.0, 0.0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
gaussians.set_anchor_mask(viewpoint_cam.camera_center, iteration, viewpoint_cam.resolution_scale)
voxel_visible_mask = prefilter_voxel(viewpoint_cam, gaussians, pipe, background)
retain_grad = (iteration < opt.update_until and iteration >= 0)
render_pkg = render(viewpoint_cam, gaussians, pipe, background, visible_mask=voxel_visible_mask, retain_grad=retain_grad)
image, viewspace_point_tensor, visibility_filter, offset_selection_mask, radii, scaling, opacity = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["selection_mask"], render_pkg["radii"], render_pkg["scaling"], render_pkg["neural_opacity"]
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
ssim_loss = (1.0 - ssim(image, gt_image))
if scaling.shape[0] > 0:
scaling_reg = scaling.prod(dim=1).mean()
else:
scaling_reg = torch.tensor(0.0, device="cuda")
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * ssim_loss + 0.01*scaling_reg
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, dataset_name, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background), wandb, logger)
if (iteration in saving_iterations):
logger.info("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# densification
if iteration < opt.update_until and iteration > opt.start_stat:
# add statis
gaussians.training_statis(viewspace_point_tensor, opacity, visibility_filter, offset_selection_mask, voxel_visible_mask)
# densification
if opt.update_anchor and iteration > opt.update_from and iteration % opt.update_interval == 0:
gaussians.adjust_anchor(
iteration=iteration,
check_interval=opt.update_interval,
success_threshold=opt.success_threshold,
grad_threshold=opt.densify_grad_threshold,
update_ratio=dataset.update_ratio,
extra_ratio=dataset.extra_ratio,
extra_up=dataset.extra_up,
min_opacity=opt.min_opacity
)
elif iteration == opt.update_until:
del gaussians.opacity_accum
del gaussians.offset_gradient_accum
del gaussians.offset_denom
torch.cuda.empty_cache()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
logger.info("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, dataset_name, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, wandb=None, logger=None):
if tb_writer:
tb_writer.add_scalar(f'{dataset_name}/train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'{dataset_name}/train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{dataset_name}/iter_time', elapsed, iteration)
if wandb is not None:
wandb.log({"train_l1_loss":Ll1, 'train_total_loss':loss, })
# Report test and samples of training set
if iteration in testing_iterations:
scene.gaussians.eval()
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
if wandb is not None:
gt_image_list = []
render_image_list = []
errormap_list = []
for idx, viewpoint in enumerate(config['cameras']):
scene.gaussians.set_anchor_mask(viewpoint.camera_center, iteration, viewpoint.resolution_scale)
voxel_visible_mask = prefilter_voxel(viewpoint, scene.gaussians, *renderArgs)
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, visible_mask=voxel_visible_mask)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 30):
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/errormap".format(viewpoint.image_name), (gt_image[None]-image[None]).abs(), global_step=iteration)
if wandb:
render_image_list.append(image[None])
errormap_list.append((gt_image[None]-image[None]).abs())
if iteration == testing_iterations[0]:
tb_writer.add_images(f'{dataset_name}/'+config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
if wandb:
gt_image_list.append(gt_image[None])
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
logger.info("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(f'{dataset_name}/'+config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(f'{dataset_name}/'+config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if wandb is not None:
wandb.log({f"{config['name']}_loss_viewpoint_l1_loss":l1_test, f"{config['name']}_PSNR":psnr_test})
if tb_writer:
# tb_writer.add_histogram(f'{dataset_name}/'+"scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar(f'{dataset_name}/'+'total_points', scene.gaussians.get_anchor.shape[0], iteration)
torch.cuda.empty_cache()
scene.gaussians.train()
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
error_path = os.path.join(model_path, name, "ours_{}".format(iteration), "errors")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(error_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
t_list = []
visible_count_list = []
per_view_dict = {}
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
torch.cuda.synchronize();t_start = time.time()
gaussians.set_anchor_mask(view.camera_center, iteration, view.resolution_scale)
voxel_visible_mask = prefilter_voxel(view, gaussians, pipeline, background)
render_pkg = render(view, gaussians, pipeline, background, visible_mask=voxel_visible_mask)
torch.cuda.synchronize();t_end = time.time()
t_list.append(t_end - t_start)
# renders
rendering = torch.clamp(render_pkg["render"], 0.0, 1.0)
visible_count = render_pkg["visibility_filter"].sum()
visible_count_list.append(visible_count)
# gts
gt = view.original_image[0:3, :, :]
# error maps
if gt.device != rendering.device:
rendering = rendering.to(gt.device)
errormap = (rendering - gt).abs()
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(errormap, os.path.join(error_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
per_view_dict['{0:05d}'.format(idx) + ".png"] = visible_count.item()
with open(os.path.join(model_path, name, "ours_{}".format(iteration), "per_view_count.json"), 'w') as fp:
json.dump(per_view_dict, fp, indent=True)
return t_list, visible_count_list
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train=False, skip_test=False, wandb=None, tb_writer=None, dataset_name=None, logger=None):
with torch.no_grad():
gaussians = GaussianModel(
dataset.feat_dim, dataset.n_offsets, dataset.fork, dataset.use_feat_bank, dataset.appearance_dim,
dataset.add_opacity_dist, dataset.add_cov_dist, dataset.add_color_dist, dataset.add_level,
dataset.visible_threshold, dataset.dist2level, dataset.base_layer, dataset.progressive, dataset.extend
)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False, resolution_scales=dataset.resolution_scales)
gaussians.eval()
if dataset.random_background:
bg_color = [np.random.random(),np.random.random(),np.random.random()]
elif dataset.white_background:
bg_color = [1.0, 1.0, 1.0]
else:
bg_color = [0.0, 0.0, 0.0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not os.path.exists(dataset.model_path):
os.makedirs(dataset.model_path)
if not skip_train:
t_train_list, visible_count = render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background)
train_fps = 1.0 / torch.tensor(t_train_list[5:]).mean()
logger.info(f'Train FPS: \033[1;35m{train_fps.item():.5f}\033[0m')
if wandb is not None:
wandb.log({"train_fps":train_fps.item(), })
if not skip_test:
t_test_list, visible_count = render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background)
test_fps = 1.0 / torch.tensor(t_test_list[5:]).mean()
logger.info(f'Test FPS: \033[1;35m{test_fps.item():.5f}\033[0m')
if tb_writer:
tb_writer.add_scalar(f'{dataset_name}/test_FPS', test_fps.item(), 0)
if wandb is not None:
wandb.log({"test_fps":test_fps, })
return visible_count
def readImages(renders_dir, gt_dir):
renders = []
gts = []
image_names = []
for fname in os.listdir(renders_dir):
render = Image.open(renders_dir / fname)
gt = Image.open(gt_dir / fname)
renders.append(tf.to_tensor(render).unsqueeze(0)[:, :3, :, :].cuda())
gts.append(tf.to_tensor(gt).unsqueeze(0)[:, :3, :, :].cuda())
image_names.append(fname)
return renders, gts, image_names
def evaluate(model_paths, eval_name, visible_count=None, wandb=None, tb_writer=None, dataset_name=None, logger=None):
full_dict = {}
per_view_dict = {}
full_dict_polytopeonly = {}
per_view_dict_polytopeonly = {}
print("")
scene_dir = model_paths
full_dict[scene_dir] = {}
per_view_dict[scene_dir] = {}
full_dict_polytopeonly[scene_dir] = {}
per_view_dict_polytopeonly[scene_dir] = {}
test_dir = Path(scene_dir) / eval_name
for method in os.listdir(test_dir):
full_dict[scene_dir][method] = {}
per_view_dict[scene_dir][method] = {}
full_dict_polytopeonly[scene_dir][method] = {}
per_view_dict_polytopeonly[scene_dir][method] = {}
method_dir = test_dir / method
gt_dir = method_dir/ "gt"
renders_dir = method_dir / "renders"
renders, gts, image_names = readImages(renders_dir, gt_dir)
ssims = []
psnrs = []
lpipss = []
for idx in tqdm(range(len(renders)), desc="Metric evaluation progress"):
ssims.append(ssim(renders[idx], gts[idx]))
psnrs.append(psnr(renders[idx], gts[idx]))
lpipss.append(lpips_fn(renders[idx], gts[idx]).detach())
if wandb is not None:
wandb.log({"test_SSIMS":torch.stack(ssims).mean().item(), })
wandb.log({"test_PSNR_final":torch.stack(psnrs).mean().item(), })
wandb.log({"test_LPIPS":torch.stack(lpipss).mean().item(), })
logger.info(f"model_paths: \033[1;35m{model_paths}\033[0m")
logger.info(" SSIM : \033[1;35m{:>12.7f}\033[0m".format(torch.tensor(ssims).mean(), ".5"))
logger.info(" PSNR : \033[1;35m{:>12.7f}\033[0m".format(torch.tensor(psnrs).mean(), ".5"))
logger.info(" LPIPS: \033[1;35m{:>12.7f}\033[0m".format(torch.tensor(lpipss).mean(), ".5"))
print("")
if tb_writer:
tb_writer.add_scalar(f'{dataset_name}/SSIM', torch.tensor(ssims).mean().item(), 0)
tb_writer.add_scalar(f'{dataset_name}/PSNR', torch.tensor(psnrs).mean().item(), 0)
tb_writer.add_scalar(f'{dataset_name}/LPIPS', torch.tensor(lpipss).mean().item(), 0)
tb_writer.add_scalar(f'{dataset_name}/VISIBLE_NUMS', torch.tensor(visible_count).mean().item(), 0)
full_dict[scene_dir][method].update({"SSIM": torch.tensor(ssims).mean().item(),
"PSNR": torch.tensor(psnrs).mean().item(),
"LPIPS": torch.tensor(lpipss).mean().item()})
per_view_dict[scene_dir][method].update({"SSIM": {name: ssim for ssim, name in zip(torch.tensor(ssims).tolist(), image_names)},
"PSNR": {name: psnr for psnr, name in zip(torch.tensor(psnrs).tolist(), image_names)},
"LPIPS": {name: lp for lp, name in zip(torch.tensor(lpipss).tolist(), image_names)},
"VISIBLE_COUNT": {name: vc for vc, name in zip(torch.tensor(visible_count).tolist(), image_names)}})
with open(scene_dir + "/results.json", 'w') as fp:
json.dump(full_dict[scene_dir], fp, indent=True)
with open(scene_dir + "/per_view.json", 'w') as fp:
json.dump(per_view_dict[scene_dir], fp, indent=True)
def get_logger(path):
import logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fileinfo = logging.FileHandler(os.path.join(path, "outputs.log"))
fileinfo.setLevel(logging.INFO)
controlshow = logging.StreamHandler()
controlshow.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s: %(message)s")
fileinfo.setFormatter(formatter)
controlshow.setFormatter(formatter)
logger.addHandler(fileinfo)
logger.addHandler(controlshow)
return logger
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument('--warmup', action='store_true', default=False)
parser.add_argument('--use_wandb', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[-1])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[-1])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--gpu", type=str, default = '-1')
args = parser.parse_args(sys.argv[1:])
# enable logging
model_path = args.model_path
os.makedirs(model_path, exist_ok=True)
logger = get_logger(model_path)
logger.info(f'args: {args}')
if args.test_iterations[0] == -1:
args.test_iterations = [i for i in range(10000, args.iterations + 1, 10000)]
if len(args.test_iterations) == 0 or args.test_iterations[-1] != args.iterations:
args.test_iterations.append(args.iterations)
print(args.test_iterations)
if args.save_iterations[0] == -1:
args.save_iterations = [i for i in range(10000, args.iterations + 1, 10000)]
if len(args.save_iterations) == 0 or args.save_iterations[-1] != args.iterations:
args.save_iterations.append(args.iterations)
print(args.save_iterations)
if args.gpu != '-1':
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
os.system("echo $CUDA_VISIBLE_DEVICES")
logger.info(f'using GPU {args.gpu}')
try:
saveRuntimeCode(os.path.join(args.model_path, 'backup'))
except:
logger.info(f'save code failed~')
dataset = args.source_path.split('/')[-1]
exp_name = args.model_path.split('/')[-2]
if args.use_wandb:
wandb.login()
run = wandb.init(
# Set the project where this run will be logged
project=f"Octree-GS-{dataset}",
name=exp_name,
# Track hyperparameters and run metadata
settings=wandb.Settings(start_method="fork"),
config=vars(args)
)
else:
wandb = None
logger.info("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
# training
training(lp.extract(args), op.extract(args), pp.extract(args), dataset, args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, wandb, logger)
if args.warmup:
logger.info("\n Warmup finished! Reboot from last checkpoints")
new_ply_path = os.path.join(args.model_path, f'point_cloud/iteration_{args.iterations}', 'point_cloud.ply')
training(lp.extract(args), op.extract(args), pp.extract(args), dataset, args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, wandb=wandb, logger=logger, ply_path=new_ply_path)
# All done
logger.info("\nTraining complete.")
# rendering
logger.info(f'\nStarting Rendering~')
if args.eval:
visible_count = render_sets(lp.extract(args), -1, pp.extract(args), skip_train=True, skip_test=False, wandb=wandb, logger=logger)
else:
visible_count = render_sets(lp.extract(args), -1, pp.extract(args), skip_train=False, skip_test=True, wandb=wandb, logger=logger)
logger.info("\nRendering complete.")
# calc metrics
logger.info("\n Starting evaluation...")
eval_name = 'test' if args.eval else 'train'
evaluate(args.model_path, eval_name, visible_count=visible_count, wandb=wandb, logger=logger)
logger.info("\nEvaluating complete.")