-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
78 lines (63 loc) · 2.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import os
import torch
import dgl
def accuracy(scores, targets):
scores = scores.detach().argmax(dim=1)
acc = (scores == targets).float().sum().item()
return acc
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def gpu_setup(use_gpu, gpu_id):
if torch.cuda.is_available() and use_gpu:
device = torch.device(f'cuda:{gpu_id}')
print('cuda available with GPU:', torch.cuda.get_device_name(gpu_id))
else:
print('cuda not available')
device = torch.device("cpu")
return device
def view_model_param(model_name, model):
total_param = 0
print("MODEL DETAILS:\n")
# print(model)
for param in model.parameters():
# print(param.data.size())
total_param += np.prod(list(param.data.size()))
print('MODEL/Total parameters:', model_name, total_param)
return total_param
def split_dataset(labels, valid_split=0.1):
idx = np.random.permutation(len(labels))
valid_idx = []
train_idx = []
label_count = [0 for _ in range(1+max(labels))]
valid_count = [0 for _ in label_count]
for i in idx:
label_count[labels[i]] += 1
for i in idx:
l = labels[i]
if valid_count[l] < label_count[l]*valid_split:
valid_count[l] += 1
valid_idx.append(i)
else:
train_idx.append(i)
return train_idx, valid_idx
def collate(samples):
# The input samples is a list of pairs (graph, label).
graphs, labels = map(list, zip(*samples))
labels = torch.tensor(np.array(labels))
#tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))]
#tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ]
#snorm_n = torch.cat(tab_snorm_n).sqrt()
#tab_sizes_e = [ graphs[i].number_of_edges() for i in range(len(graphs))]
#tab_snorm_e = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_e ]
#snorm_e = torch.cat(tab_snorm_e).sqrt()
for idx, graph in enumerate(graphs):
graphs[idx].ndata['feat'] = graph.ndata['feat'].float()
graphs[idx].edata['feat'] = graph.edata['feat'].float()
batched_graph = dgl.batch(graphs)
return batched_graph, labels