-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathflythrough.py
164 lines (134 loc) · 8.28 KB
/
flythrough.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import sys
import argparse
from pathlib import Path
from typing import Tuple, List
import shutil
from tqdm import tqdm
import moviepy.editor as mpy
sys.path.append('')
import set_python_path
from mitsuba.core import *
from mitsuba.render import RenderJob, RenderQueue
import mesh
import cameras
import util
import pointcloud
def render_trajectory_frames(mesh_path: Tuple[Path, Path], trajectory: List[Transform], queue: RenderQueue,
shutter_time: float, width: int = 1920, height: int = 1440, fov: float = 60.,
num_samples: int = 32) -> None:
"""
Render a camera trajectory through a mesh loaded from mesh_path[0] at the Transformations given in trajectory
:param mesh_path: Path tuple (input_filepath, output_dirpath) of the mesh to render
:param trajectory: List of Mitsuba Transformations, corresponding to cameras in the trajectory
:param shutter_time: The camera shutter time. Controls the amount of motion blur between every pair of consecutive frames
:param width: Parameter passed to cameras.create_sensor_from_transform
:param height: Parameter passed to cameras.create_sensor_from_transform
:param fov: The field of view
:param num_samples: Parameter passed to cameras.create_sensor_from_transform
:param queue: The Mitsuba render queue to use for all the frames
:return:
"""
input_path, output_path = mesh_path
# Make Mesh
mesh_obj = mesh.prepare_ply_mesh(input_path, util.get_predefined_spectrum('light_blue'))
# Create sensors with animation transforms
sensors = cameras.create_animated_sensors(trajectory, shutter_time, width, height, fov, num_samples)
scene = util.construct_simple_scene([mesh_obj], sensors[0])
with tqdm(total=len(sensors), bar_format='Total {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}] {desc}', dynamic_ncols=True) as t:
util.redirect_logger(tqdm.write, EError, t)
t.write(input_path.stem)
for idx, sensor in enumerate(sensors):
# Make Scene
scene.setSensor(sensor)
scene.setDestinationFile(str(output_path / f'{input_path.stem}-{idx}.png'))
# Make Result
job = RenderJob(f'Render-{input_path.stem}-{idx}', scene, queue)
job.start()
queue.waitLeft(0)
queue.join()
t.update()
def create_movie_from_frames(images_path: Path, output_filepath: Path, frame_durations=None):
"""
Create a movie from images (like the ones rendered by Mitsuba).
Uses moviepy (which uses ffmpeg). Movies will have 30fps if frame_durations is None
:param images_path: Path containing only image files
:param output_filepath: Path to output video file
:param frame_durations: If not None, specifies the duration of frames (1 = one frame).
Must contain one for every file in images_path
:return:
"""
files = list(images_path.iterdir())
files = sorted(files, key=lambda filepath: int(filepath.stem.split('-')[-1]))
if frame_durations is not None:
assert len(files) == len(frame_durations)
clip = mpy.ImageSequenceClip([str(file) for file in files], durations=frame_durations)
else:
clip = mpy.ImageSequenceClip([str(file) for file in files], fps=30)
clip.on_color().write_videofile(str(output_filepath), fps=30, audio=False)
def main(args):
input_paths = [Path(path_str) for path_str in args.input]
output_path = Path(args.output)
assert output_path.parent.is_dir()
if not output_path.is_dir():
output_path.mkdir(parents=False)
assert all([path.exists() for path in input_paths])
mesh_paths = list(util.generate_mesh_paths(input_paths, output_path, selected_meshes=util.read_filelist(Path(args.scenes_list)) if args.scenes_list is not None else None))
for input_path, output_path in mesh_paths:
intermediate_path = Path(output_path) / f'{input_path.stem}-frames'
if not args.norender:
if intermediate_path.is_dir():
res = input(f"Mesh {input_path.stem} has already been rendered, delete and re-render? Y/n")
if res == 'n':
sys.exit(0)
shutil.rmtree(intermediate_path)
render_queue = util.prepare_queue(args.workers, remote_stream=[SocketStream(remote, 7554) for remote in args.remote] if args.remote is not None else None)
for input_path, output_path in mesh_paths:
intermediate_path = Path(output_path) / f'{input_path.stem}-frames'
if not args.norender:
intermediate_path.mkdir()
if args.cameras is None:
bbox = pointcloud.get_pointcloud_bbox(pointcloud.load_from_ply(input_path))
trajectory = cameras.create_trajectory_on_bbsphere(bbox,
initial_positioning_vector=Vector3(0, 1, 1),
rotation_around=util.axis_unit_vector('z'),
num_cameras=args.frames, radius_multiplier=3.,
tilt=Transform.rotate(util.axis_unit_vector('x'), 20.))
else:
cameras_path = Path(args.cameras)
if cameras_path.is_dir():
camera_filepath = cameras_path / f'{input_path.stem}.xml'
else:
camera_filepath = cameras_path
assert camera_filepath.is_file(), f"Camera file {camera_filepath} has to exist"
key_poses = cameras.read_meshlab_sensor_transforms(camera_filepath)
trajectory = cameras.create_interpolated_trajectory(key_poses, method=args.interpolation, num_total_cameras=args.frames)
if not args.norender:
render_trajectory_frames((input_path, intermediate_path), trajectory, render_queue,
args.shutter_time, args.width, args.height, args.fov, args.samples)
if not args.novideo:
create_movie_from_frames(intermediate_path, output_path / f'{input_path.stem}.mp4')
if not args.keep:
shutil.rmtree(intermediate_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser("Render a flythrough video of a scene")
parser.add_argument('input', nargs='+', help='Path to the ply file to render')
parser.add_argument('-o', '--output', required=True, help='Path to write output video to')
# Scene render parameters
parser.add_argument('--remote', nargs='*', required=False, help='Urls of the remote render servers')
parser.add_argument('--novideo', action='store_true', help='Only render frames, do not produce video')
parser.add_argument('--norender', action='store_true', help='Only render video from existing frames, no rendering')
parser.add_argument('--keep', action='store_true', help='Whether to keep the frame images')
parser.add_argument('--scenes_list', required=False, help='Path to file containing filenames to render in base path')
parser.add_argument('--frames', required=True, type=int, help='Number of frames to render (The video file will have 30fps)')
parser.add_argument('--cameras', required=False, help='XML file containing meshlab cameras (or path to directory only containing such files). '
'If set, this is used for spline interpolation. Otherwise, a rotating flyover is generated')
# Sensor parameters
parser.add_argument('--shutter_time', default=1., type=float, help='Shutter time of the moving sensor')
parser.add_argument('--width', default=1280, type=int, help='Width of the resulting image')
parser.add_argument('--height', default=960, type=int, help='Height of the resulting image')
parser.add_argument('--fov', default=60., type=float, help='Field of view of the sensor in degrees (meshlab default is 60)')
parser.add_argument('--samples', default=128, type=int, help='Number of integrator samples per pixel')
parser.add_argument('--interpolation', default='catmullrom', choices=['catmullrom', 'bezier'], help='Which method to use for interpolation between control points')
# General render parameters
parser.add_argument('--workers', required=False, default=8, type=int, help="How many local concurrent workers to use")
main(parser.parse_args())