-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun_openai.py
558 lines (508 loc) · 15.8 KB
/
run_openai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import os
import re
import json
import time
import random
from tqdm import tqdm
from openai import OpenAI
from datasets import load_dataset
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
from datetime import datetime, timedelta
import codecs
import toml
import argparse
import queue
import numpy as np
import copy
parser = argparse.ArgumentParser(
prog="python3 run_openai.py",
description="Run MMLU Pro Benchmark for a local LLM via OpenAI Compatible API.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
help="Configuration file. Default=config.toml",
default="config.toml",
)
parser.add_argument(
"-u",
"--url",
help="server url",
)
parser.add_argument("-a", "--api", help="api key")
parser.add_argument("-m", "--model", help="Model name")
parser.add_argument(
"--timeout",
type=float,
help="Request timeout in seconds",
)
parser.add_argument("--category", type=str)
parser.add_argument("--subset", type=float, help="Fraction (0.4 for 40%) of items to keep per category.")
parser.add_argument("-p", "--parallel", type=int, help="Number of parallel requests")
parser.add_argument("-v", "--verbosity", type=int, help="Verbosity level 0-2")
parser.add_argument(
"--log_prompt",
help="Writes exact prompt and response into log.txt",
action="store_true",
)
parser.add_argument(
"--comment", type=str, help="Comment to be included in the final report."
)
args = parser.parse_args()
config = toml.load(open(args.config))
if args.url:
config["server"]["url"] = args.url
if args.api:
config["server"]["api_key"] = args.api
if args.model:
config["server"]["model"] = args.model
if args.timeout:
config["server"]["timeout"] = args.timeout
if args.category:
config["test"]["categories"] = [args.category]
if args.subset:
config["test"]["subset"] = args.subset
if args.parallel:
config["test"]["parallel"] = args.parallel
if args.verbosity:
config["log"]["verbosity"] = args.verbosity
if args.log_prompt:
config["log"]["log_prompt"] = args.log_prompt
if args.comment:
config["comment"] = args.comment
client = OpenAI(
base_url=config["server"]["url"],
api_key=config["server"]["api_key"],
timeout=config["server"]["timeout"],
)
def log(message):
print(message)
with codecs.open(log_path, "a", "utf-8") as file:
file.write(message + "\n")
def get_chat_completion(messages):
try:
response = client.chat.completions.create(
model=config["server"]["model"],
messages=messages,
temperature=config["inference"]["temperature"],
max_tokens=config["inference"]["max_tokens"],
top_p=config["inference"]["top_p"],
frequency_penalty=0,
presence_penalty=0,
stop=["Question:"],
timeout=config["server"]["timeout"],
)
try:
usage_q.put(
(response.usage.prompt_tokens, response.usage.completion_tokens)
)
except:
pass
return response.choices[0].message.content.strip()
except Exception as e:
print("Resubmitting, Error: ", e)
time.sleep(3)
return get_chat_completion(messages)
def get_completion(prompt):
try:
response = client.completions.create(
model=config["server"]["model"],
prompt=prompt,
temperature=config["inference"]["temperature"],
max_tokens=config["inference"]["max_tokens"],
top_p=config["inference"]["top_p"],
frequency_penalty=0,
presence_penalty=0,
stop=["Question:"],
timeout=config["server"]["timeout"],
)
try:
usage_q.put(
(response.usage.prompt_tokens, response.usage.completion_tokens)
)
except:
pass
if response.choices:
return response.choices[0].text.strip()
elif response.content:
return response.content.strip()
print("Can't get response.")
return None
except Exception as e:
print("Resubmitting, Error: ", e)
time.sleep(3)
return get_completion(prompt)
def load_mmlu_pro():
dataset = load_dataset("TIGER-Lab/MMLU-Pro")
test_df, val_df = dataset["test"], dataset["validation"]
test_df = preprocess(test_df, subset=config["test"]["subset"])
val_df = preprocess(val_df)
return test_df, val_df
def preprocess(test_df, subset=1.0):
if not (0.0 <= subset <= 1.0):
raise ValueError("Subset must be a value between 0.0 and 1.0.")
res_df = []
for each in test_df:
options = []
for opt in each["options"]:
if opt == "N/A":
continue
options.append(opt)
each["options"] = options
res_df.append(each)
res = {}
for each in res_df:
if each["category"] not in res:
res[each["category"]] = []
res[each["category"]].append(each)
for category in res:
items = res[category]
subset_size = max(1, int(len(items) * subset))
res[category] = items[:subset_size]
return res
def format_example(question, options, cot_content=""):
if cot_content == "":
cot_content = "Let's think step by step."
if cot_content.startswith("A: "):
cot_content = cot_content[3:]
example = "Question: {}\nOptions: ".format(question)
choice_map = "ABCDEFGHIJ"
for i, opt in enumerate(options):
example += "{}. {}\n".format(choice_map[i], opt)
return example.strip(), cot_content.strip()
def multi_chat_prompt(cot_examples, question, options):
messages = [
{
"role": "system",
"content": config["inference"]["system_prompt"],
},
]
for each in cot_examples:
example, cot_content = format_example(
each["question"], each["options"], each["cot_content"]
)
messages.append({"role": "user", "content": example})
messages.append({"role": "assistant", "content": "Answer: " + cot_content})
example, cot_content = format_example(question, options)
messages.append({"role": "user", "content": example})
return messages
def single_chat_prompt(cot_examples, question, options):
messages = [
{
"role": "system",
"content": config["inference"]["system_prompt"],
},
]
prompt = no_chat_prompt(cot_examples, question, options, no_system=True)
messages.append({"role": "user", "content": prompt})
return messages
def no_chat_prompt(cot_examples, question, options, no_system=False):
prompt = config["inference"]["system_prompt"] + "\n\n"
if no_system:
prompt = ""
for each in cot_examples:
example, cot_content = format_example(
each["question"], each["options"], each["cot_content"]
)
prompt += example + "\n"
prompt += "Answer: " + cot_content + "\n\n"
example, cot_content = format_example(question, options)
prompt += example + "\n"
prompt += "Answer: " + cot_content
return prompt
def extract_answer(text):
pattern = r"answer is \(?([A-J])\)?"
match = re.search(pattern, text)
if match:
return match[1]
else:
return extract_again(text)
def extract_again(text):
match = re.search(r'.*[aA]nswer:\s*([A-J])', text)
if match:
return match[1]
else:
return extract_final(text)
def extract_final(text):
pattern = r"\b[A-J]\b(?!.*\b[A-J]\b)"
match = re.search(pattern, text, re.DOTALL)
if match:
return match[0]
else:
if config["log"]["verbosity"] >= 1:
print("Extraction failed:\n", text)
return None
def run_single_question(single_question, cot_examples_dict, exist_result):
exist = True
q_id = single_question["question_id"]
for each in exist_result:
if (
q_id == each["question_id"]
and single_question["question"] == each["question"]
):
if config["log"]["verbosity"] >= 1:
print("already exists, skipping.")
return None, None, None, exist
exist = False
category = single_question["category"]
cot_examples = cot_examples_dict[category]
question = single_question["question"]
options = single_question["options"]
try:
if config["inference"]["style"] == "single_chat":
prompt = single_chat_prompt(cot_examples, question, options)
response = get_chat_completion(prompt)
elif config["inference"]["style"] == "multi_chat":
prompt = multi_chat_prompt(cot_examples, question, options)
response = get_chat_completion(prompt)
elif config["inference"]["style"] == "no_chat":
prompt = no_chat_prompt(cot_examples, question, options)
response = get_completion(prompt)
except Exception as e:
print("error", e)
return None, None, None, exist
pred = extract_answer(response)
return prompt, response, pred, exist
def update_result(output_res_path, lock):
category_record = {}
res = []
success = False
while not success:
try:
if os.path.exists(output_res_path):
with lock:
with open(output_res_path, "r") as fi:
res = json.load(fi)
for each in res:
category = each["category"]
if category not in category_record:
category_record[category] = {"corr": 0.0, "wrong": 0.0}
category_record["random"] = {"corr": 0.0, "wrong": 0.0}
if not each["pred"]:
random.seed(12345)
x = random.randint(0, len(each["options"]) - 1)
if x == each["answer_index"]:
category_record[category]["corr"] += 1
category_record["random"]["corr"] += 1
else:
category_record[category]["wrong"] += 1
category_record["random"]["wrong"] += 1
elif each["pred"] == each["answer"]:
category_record[category]["corr"] += 1
else:
category_record[category]["wrong"] += 1
success = True
except Exception as e:
print("Error", e)
return res, category_record
def evaluate(subjects):
test_df, dev_df = load_mmlu_pro()
if not subjects:
subjects = list(test_df.keys())
print("assigned subjects", subjects)
lock = threading.Lock()
system_prompt = config["inference"]["system_prompt"]
for subject in subjects:
start = time.time()
print(f"Testing {subject}...")
config["inference"]["system_prompt"] = system_prompt.replace(
"{subject}", subject
)
test_data = test_df[subject]
output_res_path = os.path.join(output_dir, subject + "_result.json")
output_summary_path = os.path.join(output_dir, subject + "_summary.json")
res, category_record = update_result(output_res_path, lock)
with ThreadPoolExecutor(max_workers=config["test"]["parallel"]) as executor:
futures = {
executor.submit(run_single_question, each, dev_df, res): each
for each in test_data
}
for future in tqdm(
as_completed(futures), total=len(futures), smoothing=0.0, ascii=True
):
each = futures[future]
label = each["answer"]
category = subject
prompt, response, pred, exist = future.result()
if exist:
continue
if response is not None:
res, category_record = update_result(output_res_path, lock)
if category not in category_record:
category_record[category] = {"corr": 0.0, "wrong": 0.0}
if config["log"]["log_prompt"]:
each["prompt"] = prompt
each["response"] = response
each["pred"] = pred
res.append(each)
if config["log"]["verbosity"] >= 2:
log_json = {
"id": each["question_id"],
"question": each["question"],
"response": each["response"],
"pred": each["pred"],
"answer": each["answer"],
}
print("\n" + json.dumps(log_json, indent="\t"))
if pred is not None:
if pred == label:
category_record[category]["corr"] += 1
else:
category_record[category]["wrong"] += 1
else:
category_record[category]["wrong"] += 1
save_res(res, output_res_path, lock)
save_summary(category_record, output_summary_path, lock)
res, category_record = update_result(output_res_path, lock)
save_res(res, output_res_path, lock)
log(f"Finished testing {subject} in {elapsed(start)}.")
save_summary(category_record, output_summary_path, lock, report=True)
def save_res(res, output_res_path, lock):
temp = []
exist_q_id = []
for each in res:
if each["question_id"] not in exist_q_id:
exist_q_id.append(each["question_id"])
temp.append(each)
else:
continue
res = temp
with lock:
with open(output_res_path, "w") as fo:
fo.write(json.dumps(res, indent="\t"))
def print_score(label, corr, wrong):
try:
corr = int(corr)
wrong = int(wrong)
total = corr + wrong
acc = corr / total * 100
log(f"{label}, {corr}/{total}, {acc:.2f}%")
except Exception as e:
log(f"{label}, {e} error")
def save_summary(category_record, output_summary_path, lock, report=False):
total_corr = 0.0
total_wrong = 0.0
for k, v in category_record.items():
if k == "total" or k == "random":
continue
cat_acc = v["corr"] / (v["corr"] + v["wrong"])
category_record[k]["acc"] = cat_acc
total_corr += v["corr"]
total_wrong += v["wrong"]
acc = total_corr / (total_corr + total_wrong)
category_record["total"] = {"corr": total_corr, "wrong": total_wrong, "acc": acc}
if report:
print_score("Total", total_corr, total_wrong)
if "random" in category_record:
random_corr = category_record["random"]["corr"]
random_wrong = category_record["random"]["wrong"]
print_score(
"Random Guess Attempts",
random_corr + random_wrong,
total_corr + total_wrong - random_corr - random_wrong,
)
print_score("Correct Random Guesses", random_corr, random_wrong)
print_score(
"Adjusted Score Without Random Guesses",
total_corr - random_corr,
total_wrong - random_wrong,
)
with lock:
with open(output_summary_path, "w") as fo:
fo.write(json.dumps(category_record, indent="\t"))
def final_report(assigned_subjects):
total_corr = 0.0
total_wrong = 0.0
random_corr = 0.0
random_wrong = 0.0
names = ["overall"] + assigned_subjects
table = "| " + " | ".join(names) + " |\n"
separators = [re.sub(r".", "-", name) for name in names]
table += "| " + " | ".join(separators) + " |\n"
scores = []
for file in assigned_subjects:
res = json.load(open(os.path.join(output_dir, file + "_summary.json")))
cat_corr = res["total"]["corr"]
total_corr += cat_corr
cat_wrong = res["total"]["wrong"]
total_wrong += cat_wrong
scores.append(cat_corr / (cat_corr + cat_wrong))
if "random" in res:
random_corr += res["random"]["corr"]
random_wrong += res["random"]["wrong"]
print_score("Total", total_corr, total_wrong)
if random_corr and random_wrong:
print_score(
"Random Guess Attempts",
random_corr + random_wrong,
total_corr + total_wrong - random_corr - random_wrong,
)
print_score("Correct Random Guesses", random_corr, random_wrong)
print_score(
"Adjusted Score Without Random Guesses",
total_corr - random_corr,
total_wrong - random_wrong,
)
scores.insert(0, total_corr / (total_corr + total_wrong))
scores = [f"{score*100:.2f}" for score in scores]
table += "| " + " | ".join(scores) + " |"
token_report()
log("Markdown Table:")
log(table)
def elapsed(start):
duration = time.time() - start
duration_td = timedelta(seconds=duration)
days = duration_td.days
hours, remainder = divmod(duration_td.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
dur_str = ""
if days:
dur_str = f"{days} days "
if hours:
dur_str += f"{hours} hours "
if minutes:
dur_str += f"{minutes} minutes "
if seconds:
dur_str += f"{seconds} seconds"
return dur_str
def token_report():
ptoks = []
ctoks = []
while not usage_q.empty():
usage = usage_q.get()
ptoks.append(usage[0])
ctoks.append(usage[1])
if ptoks and ctoks:
log("Token Usage:")
duration = end - start
ptoks = np.array(ptoks)
ctoks = np.array(ctoks)
log(
f"Prompt tokens: min {ptoks.min()}, average {ptoks.mean():.0f}, max {ptoks.max()}, total {ptoks.sum()}, tk/s {ptoks.sum()/duration:.2f}"
)
log(
f"Completion tokens: min {ctoks.min()}, average {ctoks.mean():.0f}, max {ctoks.max()}, total {ctoks.sum()}, tk/s {ctoks.sum()/duration:.2f}"
)
if __name__ == "__main__":
usage_q = queue.Queue()
output_dir = "eval_results/" + re.sub(r"\W", "-", config["server"]["model"])
os.makedirs(output_dir, exist_ok=True)
log_path = os.path.join(output_dir, "report.txt")
try:
os.remove(log_path)
except:
pass
config_copy = copy.deepcopy(config)
del config_copy["server"]["api_key"]
del config_copy["test"]["categories"]
log(f"{datetime.now()}")
log(json.dumps(config_copy, indent="\t"))
assigned_subjects = config["test"]["categories"]
start = time.time()
evaluate(assigned_subjects)
end = time.time()
log(f"Finished the benchmark in {elapsed(start)}.")
final_report(assigned_subjects)
print("Report saved to:", log_path)