forked from lbariogl/HyperRoutine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
systematic_study.py
286 lines (229 loc) · 9.9 KB
/
systematic_study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from spectra import SpectraMaker
from hipe4ml.tree_handler import TreeHandler
import yaml
import argparse
import uproot
import numpy as np
import copy
import ROOT
ROOT.gROOT.SetBatch(True)
ROOT.RooMsgService.instance().setSilentMode(True)
ROOT.RooMsgService.instance().setGlobalKillBelow(ROOT.RooFit.ERROR)
import sys
sys.path.append('utils')
import utils as utils
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Configure the parameters of the script.')
parser.add_argument('--config-file', dest='config_file',
help="path to the YAML file with configuration.", default='')
args = parser.parse_args()
if args.config_file == "":
print('** No config file provided. Exiting. **')
exit()
config_file = open(args.config_file, 'r')
config = yaml.full_load(config_file)
input_file_name_data = config['input_files_data']
input_file_name_mc = config['input_files_mc']
input_analysis_results_file = config['input_analysis_results_file']
output_dir_name = config['output_dir']
output_file_name = config['output_file'] + '_separated.root'
if 'ct_bins' in config:
analysis_var = 'fCt'
else:
analysis_var = 'fPt'
if analysis_var == 'fCt':
analysis_bins = config['ct_bins']
else:
analysis_bins = config['pt_bins']
selections_std = config['selection']
is_matter = config['is_matter']
cut_dict_syst = config['cut_dict_syst']
signal_fit_func = config['signal_fit_func']
bkg_fit_func = config['bkg_fit_func']
do_syst = config['do_syst']
n_trials = config['n_trials']
n_bins_mass_data = config['n_bins_mass_data']
n_bins_mass_mc = config['n_bins_mass_mc']
matter_options = ['matter', 'antimatter', 'both']
if is_matter not in matter_options:
raise ValueError(
f'Invalid is-matter option. Expected one of: {matter_options}')
print('**********************************')
if analysis_var == 'fCt':
print(' Running ct_analysis.py')
else:
print(' Running pt_analysis.py')
print('**********************************\n')
print("----------------------------------")
print("** Loading data and apply preselections **")
data_hdl = TreeHandler(input_file_name_data, 'O2datahypcands')
mc_hdl = TreeHandler(input_file_name_mc, 'O2mchypcands')
# declare output file
output_file = ROOT.TFile.Open(
f'{output_dir_name}/{output_file_name}', 'recreate')
# Add columns to the handlers
utils.correct_and_convert_df(data_hdl, calibrate_he3_pt=True)
utils.correct_and_convert_df(mc_hdl, calibrate_he3_pt=True, isMC=True)
# apply preselections
matter_sel = ''
mc_matter_sel = ''
if is_matter == 'matter':
matter_sel = 'fIsMatter == True'
mc_matter_sel = 'fGenPt > 0'
elif is_matter == 'antimatter':
matter_sel = 'fIsMatter == False'
mc_matter_sel = 'fGenPt < 0'
if matter_sel != '':
data_hdl.apply_preselections(matter_sel)
mc_hdl.apply_preselections(mc_matter_sel)
# get Standard Spectrum
standard_file = ROOT.TFile(
f"{output_dir_name}/{config['output_file']}.root")
std_spectrum = standard_file.Get('std/h_corrected_counts')
std_spectrum.SetDirectory(0)
utils.setHistStyle(std_spectrum, ROOT.kRed)
std_corrected_counts = []
std_corrected_counts_err = []
for i_bin in range(1, std_spectrum.GetNbinsX()+1):
std_corrected_counts.append(std_spectrum.GetBinContent(i_bin))
std_corrected_counts_err.append(std_spectrum.GetBinError(i_bin))
# reweight MC pT spectrum
spectra_file = ROOT.TFile.Open('utils/heliumSpectraMB.root')
he3_spectrum = spectra_file.Get('fCombineHeliumSpecLevyFit_0-100')
spectra_file.Close()
utils.reweight_pt_spectrum(mc_hdl, 'fAbsGenPt', he3_spectrum)
mc_hdl.apply_preselections('rej==True')
# Needed to remove the peak at 28.5 cm in the anchored MC
mc_hdl.apply_preselections('fGenCt < 28.5 or fGenCt > 28.6')
mc_reco_hdl = mc_hdl.apply_preselections('fIsReco == 1', inplace=False)
print("** Data loaded. ** \n")
print("----------------------------------")
if analysis_var == 'fCt':
print("** Starting ct analysis **")
else:
print("** Starting pt analysis **")
# get number of events
n_ev = uproot.open(input_analysis_results_file)[
'hyper-reco-task']['hZvtx'].values().sum()
#########################
# varied cuts
#########################
print("** Starting systematic variations **")
# create a dictionary with all the possible selections for a specific variable
cut_string_dict = {}
for var in cut_dict_syst:
var_dict = cut_dict_syst[var]
cut_greater = var_dict['cut_greater']
cut_greater_string = " > " if cut_greater else " < "
cut_list = var_dict['cut_list']
cut_arr = np.linspace(cut_list[0], cut_list[1], cut_list[2])
cut_string_dict[var] = []
for cut in cut_arr:
cut_string_dict[var].append(var + cut_greater_string + str(cut))
print(" ** separated cuts **")
spectra_dict = {}
canvas_dict = {}
legend_dict = {}
chi2_selection_dict = {}
relative_error_selection_dict = {}
outlier_selection_dict = {}
for var, cuts in cut_string_dict.items():
var_dir = output_file.mkdir(f'{var}')
spectra_dict[var] = []
chi2_selection_dict[var] = []
relative_error_selection_dict[var] = []
outlier_selection_dict[var] = []
canvas_dict[var] = ROOT.TCanvas(f'c{var}', f'c{var}', 800, 600)
legend_dict[var] = ROOT.TLegend(0.45, 0.52, 0.92, 0.86, '', 'brNDC')
for i_cut, cut in enumerate(cuts):
print(f'{var}: {i_cut} / {len(cuts)} ==> {cut}')
output_dir_varied = var_dir.mkdir(f'{i_cut}')
spectra_maker = SpectraMaker()
spectra_maker.data_hdl = data_hdl
spectra_maker.mc_hdl = mc_hdl
spectra_maker.mc_reco_hdl = mc_reco_hdl
spectra_maker.n_ev = n_ev
spectra_maker.branching_ratio = 0.25
spectra_maker.delta_rap = 2.0
spectra_maker.var = analysis_var
spectra_maker.bins = analysis_bins
# varying the standard selections with the cut of interest
selections_new = copy.deepcopy(selections_std)
for element in selections_new:
element[var] = cut
sel_string_list = [utils.convert_sel_to_string(
sel) for sel in selections_new]
spectra_maker.selection_string = sel_string_list
spectra_maker.is_matter = is_matter
spectra_maker.n_bins_mass_data = n_bins_mass_data
spectra_maker.n_bins_mass_mc = n_bins_mass_mc
spectra_maker.output_dir = output_dir_varied
fit_range = [analysis_bins[0], analysis_bins[-1]]
spectra_maker.fit_range = fit_range
# create raw spectra
spectra_maker.make_spectra()
chi2_check = spectra_maker.chi2_selection()
chi2_selection_dict[var].append(chi2_check)
if not chi2_check:
print(' Rejeted for chi2')
# draw plot for signal extraction in each bin
data_output_dir_varied = output_dir_varied.mkdir('data')
mc_output_dir_varied = output_dir_varied.mkdir('mc')
data_output_dir_varied.cd()
for i, frame in enumerate(spectra_maker.h_signal_extractions_data):
frame.Write(f'fInvariantMass_{i}')
mc_output_dir_varied.cd()
for i, frame in enumerate(spectra_maker.h_signal_extractions_mc):
frame.Write(f'fInvariantMass_{i}')
# create corrected spectra
spectra_maker.make_histos()
histo = copy.deepcopy(spectra_maker.h_corrected_counts)
relative_error_check = spectra_maker.relative_error_selection()
relative_error_selection_dict[var].append(relative_error_check)
if not relative_error_check:
print(' Rejeted for large relative error of corrected counts')
if analysis_var == 'fCt':
histo.SetName(f'hCt{var}_{i_cut}')
else:
histo.SetName(f'hPt{var}_{i_cut}')
spectra_dict[var].append(histo)
data_output_dir_varied.cd()
histo.Write()
outlier_check = spectra_maker.outlier_selection(
std_corrected_counts, std_corrected_counts_err)
outlier_selection_dict[var].append(outlier_check)
if not outlier_check:
print(' Rejeted for outlier')
del spectra_maker
# get color paletter
cols = ROOT.TColor.GetPalette()
output_file.cd()
output_file.mkdir('std')
# std_spectrum.Write()
for var, histos in spectra_dict.items():
output_file.cd(f'{var}')
canvas_dict[var].cd()
if analysis_var == 'fCt':
canvas_dict[var].DrawFrame(
0., 0., 20., 3000., r';#it{ct} (cm);#frac{d#it{N}}{d(#it{ct})} (cm^{-1})')
else:
canvas_dict[var].DrawFrame(
1., 0., 5., 1.5e-8, r';#it{p}_{T} (GeV/#it{c});#frac{d#it{N}}{d#it{p}_{T}} (GeV/#it{c})^{-1}')
for i_histo, histo in enumerate(histos):
if not chi2_selection_dict[var][i_histo]:
continue
if not relative_error_selection_dict[var][i_histo]:
continue
if not outlier_selection_dict[var][i_histo]:
continue
utils.setHistStyle(histo, cols.At(i_histo*4))
legend_dict[var].AddEntry(
histo, f'{cut_string_dict[var][i_histo]}', 'PE')
histo.Draw('PE SAME')
legend_dict[var].AddEntry(
std_spectrum, 'std', 'PE')
std_spectrum.Draw('PE SAME')
legend_dict[var].Draw()
legend_dict[var].SetNColumns(5)
canvas_dict[var].Write()