-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhm.go
426 lines (355 loc) · 9.56 KB
/
hm.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
package hm
import "github.com/pkg/errors"
// Cloner is any type that can clone
type Cloner interface {
Clone() interface{}
}
// Fresher keeps track of all the TypeVariables that has been generated so far. It has one method - Fresh(), which is to create a new TypeVariable
type Fresher interface {
Fresh() TypeVariable
}
type inferer struct {
env Env
cs Constraints
t Type
count int
}
func newInferer(env Env) *inferer {
return &inferer{
env: env,
}
}
func (infer *inferer) Fresh() TypeVariable {
retVal := letters[infer.count]
infer.count++
return TypeVariable(retVal)
}
func (infer *inferer) lookup(name string) error {
s, ok := infer.env.SchemeOf(name)
if !ok {
return errors.Errorf("Undefined %v", name)
}
infer.t = Instantiate(infer, s)
return nil
}
func (infer *inferer) consGen(expr Expression) (err error) {
// explicit types/inferers - can fail
switch et := expr.(type) {
case Typer:
if infer.t = et.Type(); infer.t != nil {
return nil
}
case Inferer:
if infer.t, err = et.Infer(infer.env, infer); err == nil && infer.t != nil {
return nil
}
err = nil // reset errors
}
// fallbacks
switch et := expr.(type) {
case Literal:
return infer.lookup(et.Name())
case Var:
if err = infer.lookup(et.Name()); err != nil {
infer.env.Add(et.Name(), &Scheme{t: et.Type()})
err = nil
}
case Lambda:
tv := infer.Fresh()
env := infer.env // backup
infer.env = infer.env.Clone()
infer.env.Remove(et.Name())
sc := new(Scheme)
sc.t = tv
infer.env.Add(et.Name(), sc)
if err = infer.consGen(et.Body()); err != nil {
return errors.Wrapf(err, "Unable to infer body of %v. Body: %v", et, et.Body())
}
infer.t = NewFnType(tv, infer.t)
infer.env = env // restore backup
case Apply:
if err = infer.consGen(et.Fn()); err != nil {
return errors.Wrapf(err, "Unable to infer Fn of Apply: %v. Fn: %v", et, et.Fn())
}
fnType, fnCs := infer.t, infer.cs
if err = infer.consGen(et.Body()); err != nil {
return errors.Wrapf(err, "Unable to infer body of Apply: %v. Body: %v", et, et.Body())
}
bodyType, bodyCs := infer.t, infer.cs
tv := infer.Fresh()
cs := append(fnCs, bodyCs...)
cs = append(cs, Constraint{fnType, NewFnType(bodyType, tv)})
infer.t = tv
infer.cs = cs
case LetRec:
tv := infer.Fresh()
// env := infer.env // backup
infer.env = infer.env.Clone()
infer.env.Remove(et.Name())
infer.env.Add(et.Name(), &Scheme{tvs: TypeVarSet{tv}, t: tv})
if err = infer.consGen(et.Def()); err != nil {
return errors.Wrapf(err, "Unable to infer the definition of a letRec %v. Def: %v", et, et.Def())
}
defType, defCs := infer.t, infer.cs
s := newSolver()
s.solve(defCs)
if s.err != nil {
return errors.Wrapf(s.err, "Unable to solve constraints of def: %v", defCs)
}
sc := Generalize(infer.env.Apply(s.sub).(Env), defType.Apply(s.sub).(Type))
infer.env.Remove(et.Name())
infer.env.Add(et.Name(), sc)
if err = infer.consGen(et.Body()); err != nil {
return errors.Wrapf(err, "Unable to infer body of letRec %v. Body: %v", et, et.Body())
}
infer.t = infer.t.Apply(s.sub).(Type)
infer.cs = infer.cs.Apply(s.sub).(Constraints)
infer.cs = append(infer.cs, defCs...)
case Let:
env := infer.env
if err = infer.consGen(et.Def()); err != nil {
return errors.Wrapf(err, "Unable to infer the definition of a let %v. Def: %v", et, et.Def())
}
defType, defCs := infer.t, infer.cs
s := newSolver()
s.solve(defCs)
if s.err != nil {
return errors.Wrapf(s.err, "Unable to solve for the constraints of a def %v", defCs)
}
sc := Generalize(env.Apply(s.sub).(Env), defType.Apply(s.sub).(Type))
infer.env = infer.env.Clone()
infer.env.Remove(et.Name())
infer.env.Add(et.Name(), sc)
if err = infer.consGen(et.Body()); err != nil {
return errors.Wrapf(err, "Unable to infer body of let %v. Body: %v", et, et.Body())
}
infer.t = infer.t.Apply(s.sub).(Type)
infer.cs = infer.cs.Apply(s.sub).(Constraints)
infer.cs = append(infer.cs, defCs...)
default:
return errors.Errorf("Expression of %T is unhandled", expr)
}
return nil
}
// Instantiate takes a fresh name generator, an a polytype and makes a concrete type out of it.
//
// If ...
// Γ ⊢ e: T1 T1 ⊑ T
// ----------------------
// Γ ⊢ e: T
//
func Instantiate(f Fresher, s *Scheme) Type {
l := len(s.tvs)
tvs := make(TypeVarSet, l)
var sub Subs
if l > 30 {
sub = make(mSubs)
} else {
sub = newSliceSubs(l)
}
for i, tv := range s.tvs {
fr := f.Fresh()
tvs[i] = fr
sub = sub.Add(tv, fr)
}
return s.t.Apply(sub).(Type)
}
// Generalize takes an env and a type and creates the most general possible type - which is a polytype
//
// Generalization
//
// If ...
// Γ ⊢ e: T1 T1 ∉ free(Γ)
// ---------------------------
// Γ ⊢ e: ∀ α.T1
func Generalize(env Env, t Type) *Scheme {
logf("generalizing %v over %v", t, env)
enterLoggingContext()
defer leaveLoggingContext()
var envFree, tFree, diff TypeVarSet
if env != nil {
envFree = env.FreeTypeVar()
}
tFree = t.FreeTypeVar()
switch {
case envFree == nil && tFree == nil:
goto ret
case len(envFree) > 0 && len(tFree) > 0:
defer ReturnTypeVarSet(envFree)
defer ReturnTypeVarSet(tFree)
case len(envFree) > 0 && len(tFree) == 0:
// cannot return envFree because envFree will just be sorted and set
case len(envFree) == 0 && len(tFree) > 0:
// return ?
}
diff = tFree.Difference(envFree)
ret:
return &Scheme{
tvs: diff,
t: t,
}
}
// Infer takes an env, and an expression, and returns a scheme.
//
// The Infer function is the core of the HM type inference system. This is a reference implementation and is completely servicable, but not quite performant.
// You should use this as a reference and write your own infer function.
//
// Very briefly, these rules are implemented:
//
// Var
//
// If x is of type T, in a collection of statements Γ, then we can infer that x has type T when we come to a new instance of x
// x: T ∈ Γ
// -----------
// Γ ⊢ x: T
//
// Apply
//
// If f is a function that takes T1 and returns T2; and if x is of type T1;
// then we can infer that the result of applying f on x will yield a result has type T2
// Γ ⊢ f: T1→T2 Γ ⊢ x: T1
// -------------------------
// Γ ⊢ f(x): T2
//
//
// Lambda Abstraction
//
// If we assume x has type T1, and because of that we were able to infer e has type T2
// then we can infer that the lambda abstraction of e with respect to the variable x, λx.e,
// will be a function with type T1→T2
// Γ, x: T1 ⊢ e: T2
// -------------------
// Γ ⊢ λx.e: T1→T2
//
// Let
//
// If we can infer that e1 has type T1 and if we take x to have type T1 such that we could infer that e2 has type T2,
// then we can infer that the result of letting x = e1 and substituting it into e2 has type T2
// Γ, e1: T1 Γ, x: T1 ⊢ e2: T2
// --------------------------------
// Γ ⊢ let x = e1 in e2: T2
//
func Infer(env Env, expr Expression) (*Scheme, error) {
if expr == nil {
return nil, errors.Errorf("Cannot infer a nil expression")
}
if env == nil {
env = make(SimpleEnv)
}
infer := newInferer(env)
if err := infer.consGen(expr); err != nil {
return nil, err
}
s := newSolver()
s.solve(infer.cs)
if s.err != nil {
return nil, s.err
}
if infer.t == nil {
return nil, errors.Errorf("infer.t is nil")
}
t := infer.t.Apply(s.sub).(Type)
return closeOver(t)
}
// Unify unifies the two types and returns a list of substitutions.
// These are the rules:
//
// Type Constants and Type Constants
//
// Type constants (atomic types) have no substitution
// c ~ c : []
//
// Type Variables and Type Variables
//
// Type variables have no substitutions if there are no instances:
// a ~ a : []
//
// Default Unification
//
// if type variable 'a' is not in 'T', then unification is simple: replace all instances of 'a' with 'T'
// a ∉ T
// ---------------
// a ~ T : [a/T]
//
func Unify(a, b Type) (sub Subs, err error) {
logf("%v ~ %v", a, b)
enterLoggingContext()
defer leaveLoggingContext()
switch at := a.(type) {
case TypeVariable:
return bind(at, b)
default:
if a.Eq(b) {
return nil, nil
}
if btv, ok := b.(TypeVariable); ok {
return bind(btv, a)
}
atypes := a.Types()
btypes := b.Types()
defer ReturnTypes(atypes)
defer ReturnTypes(btypes)
if len(atypes) == 0 && len(btypes) == 0 {
goto e
}
return unifyMany(atypes, btypes)
e:
}
err = errors.Errorf("Unification Fail: %v ~ %v cannot be unified", a, b)
return
}
func unifyMany(a, b Types) (sub Subs, err error) {
logf("UnifyMany %v %v", a, b)
enterLoggingContext()
defer leaveLoggingContext()
if len(a) != len(b) {
return nil, errors.Errorf("Unequal length. a: %v b %v", a, b)
}
for i, at := range a {
bt := b[i]
if sub != nil {
at = at.Apply(sub).(Type)
bt = bt.Apply(sub).(Type)
}
var s2 Subs
if s2, err = Unify(at, bt); err != nil {
return nil, err
}
if sub == nil {
sub = s2
} else {
sub2 := compose(sub, s2)
defer ReturnSubs(s2)
if sub2 != sub {
defer ReturnSubs(sub)
}
sub = sub2
}
}
return
}
func bind(tv TypeVariable, t Type) (sub Subs, err error) {
logf("Binding %v to %v", tv, t)
switch {
// case tv == t:
case occurs(tv, t):
err = errors.Errorf("recursive unification")
default:
ssub := BorrowSSubs(1)
ssub.s[0] = Substitution{tv, t}
sub = ssub
}
logf("Sub %v", sub)
return
}
func occurs(tv TypeVariable, s Substitutable) bool {
ftv := s.FreeTypeVar()
defer ReturnTypeVarSet(ftv)
return ftv.Contains(tv)
}
func closeOver(t Type) (sch *Scheme, err error) {
sch = Generalize(nil, t)
err = sch.Normalize()
logf("closeoversch: %v", sch)
return
}