-
Notifications
You must be signed in to change notification settings - Fork 364
/
Copy pathtest.1.py
executable file
·69 lines (61 loc) · 2.43 KB
/
test.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#encoding:utf-8
from torch.utils import data
import torch as t
import numpy as np
from config import opt
import models
import json
import fire
import csv
import tqdm
from torch.autograd import Variable
def load_data(type_='char'):
with open(opt.labels_path) as f:
labels_ = json.load(f)
print "data_path: ",opt.test_data_path
question_d = np.load(opt.test_data_path)
if type_ == 'char':
test_data_title,test_data_content =\
question_d['title_char'],question_d['content_char']
elif type_ == 'word':
test_data_title,test_data_content =\
question_d['title_word'],question_d['content_word']
index2qid = question_d['index2qid'].item()
return test_data_title,test_data_content,index2qid,labels_['id2label']
def write_csv(result,index2qid,labels):
f=open(opt.result_path, "wa")
csv_writer = csv.writer(f, dialect="excel")
rows=[0 for _ in range(result.shape[0])]
for i in range(result.shape[0]):
row=[index2qid[i]]+[labels[str(int(i_))] for i_ in result[i]]
rows[i]=row
csv_writer.writerows(rows)
def dotest(model,title,content):
title,content = Variable(t.from_numpy(title).long().cuda(),volatile=True),Variable(t.from_numpy(content).long().cuda(),volatile=True)
score = model(title,content)
probs=t.nn.functional.sigmoid(score)
return probs.data.cpu().numpy()
def main(**kwargs):
opt.parse(kwargs)
model = getattr(models,opt.model)(opt).cuda().eval()
if opt.model_path is not None:
model.load(opt.model_path)
opt.parse(kwargs)
model = model.eval()
test_data_title,test_data_content,index2qid,labels=load_data(type_=opt.type_)
Num=len(test_data_title)
print "Num: ",Num
result=np.zeros((Num,1999))
for i in tqdm.tqdm(range(Num)):
if i%opt.batch_size==0 and i>0:
# import ipdb;ipdb.set_trace()
title=np.array(test_data_title[i-opt.batch_size:i])
content=np.array(test_data_content[i-opt.batch_size:i])
result[i-opt.batch_size:i,:]=dotest(model,title,content)
if Num%opt.batch_size!=0:
title=np.array(test_data_title[opt.batch_size*(Num/opt.batch_size):])
content=np.array(test_data_content[opt.batch_size*(Num/opt.batch_size):])
result[opt.batch_size*(Num/opt.batch_size):,:]=dotest(model,title,content)
t.save(t.from_numpy(result).float(),opt.result_path)
if __name__=='__main__':
fire.Fire()