-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathserver.R
138 lines (110 loc) · 5.28 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
library(randomForest)
library(data.table)
shinyServer(function(input, output, session) {
# Loads the Model to memory
AChE <- file.path("AChE_RF_int.rds")
BChE <- file.path("BChE_RF_int.rds")
AChE.RF <- readRDS(AChE)
BChE.RF <- readRDS(BChE)
# Retrieving the descriptor names from trained model data
AChE_internal <- readRDS("AChE_SubstructureFingerprinter_internal.rds")
BChE_internal <- readRDS("BChE_SubstructureFingerprinter_internal.rds")
#AChE.desc.name <- data.frame(names(AChE_internal))
AChE.desc.name <- data.frame(rownames(AChE.RF$importance))
#AChE.desc.name <- data.frame(AChE.desc.name[-nrow(AChE.desc.name),])
AChE.desc.name <- t(AChE.desc.name)
names(AChE.desc.name) <- as.character(unlist(AChE.desc.name[1,]))
#BChE.desc.name <- data.frame(names(BChE_internal))
BChE.desc.name <- data.frame(rownames(BChE.RF$importance))
#BChE.desc.name <- data.frame(BChE.desc.name[-nrow(BChE.desc.name),])
BChE.desc.name <- t(BChE.desc.name)
names(BChE.desc.name) <- as.character(unlist(BChE.desc.name[1,]))
observe({
shinyjs::hide("downloadData") # Hide download button before input submission
if(input$submitbutton>0)
shinyjs::show("downloadData") # Show download button after input submission
})
observe({
COMPOUNDDATA <- ''
compoundexample <- 'C(Cc1cccc(CCNc2c3CCCCc3nc4ccccc24)n1)Nc5c6CCCCc6nc7ccccc57 CHEMBL521935
CC1=C[C@@H]2C[C@H](C1)c3c(N)c4ccc(Cl)cc4nc3C2 CHEMBL4112162
CN(CCCOc1ccc2C=CC(=O)Oc2c1)Cc3cccc(OC(=O)NCCCCCCCN4CCOCC4)c3 CHEMBL2047529
Fc1ccc(C[n+]2ccc(cc2)C(=O)NCCc3c[nH]c4ccccc34)cc1 CHEMBL3628058
CN(C)Cc1oc(CSCCNc2cc(NN=C(C)C)c(cc2[N+](=O)[O-])[N+](=O)[O-])cc1 CHEMBL106932
COc1ccc2nc3CCCCc3c(NCCNC4=CC(=O)c5ccccc5C4=O)c2c1 CHEMBL3356528
'
if(input$addlink>0) {
isolate({
COMPOUNDDATA <- compoundexample
updateTextInput(session, inputId = "Sequence", value = COMPOUNDDATA)
})
}
})
datasetInput <- reactive({
inFile <- input$file1
inTextbox <- input$Sequence
if (is.null(inTextbox)) {
return("Please insert/upload molecules in SMILES notation")
} else {
if (is.null(inFile)) {
# Read data from text box
x <- inTextbox
write.table(x, sep="\t", file = "text.smi", col.names=FALSE, row.names=FALSE, quote=FALSE)
#x <- read.table("text.smi")
# PADEL descriptors for Testing set
#test <- x
try(system("bash PADEL.sh", intern = TRUE, ignore.stderr = TRUE))
#desc.df <- read.csv("descriptors_output.csv")
AChE.desc.df <- read.csv("descriptors_output.csv")
AChE.desc.df2 <- AChE.desc.df[,( names(AChE.desc.df) %in% AChE.desc.name )]
AChE.mol.desc = data.frame(AChE.desc.df2)
BChE.desc.df <- read.csv("descriptors_output.csv")
BChE.desc.df2 <- BChE.desc.df[,( names(BChE.desc.df) %in% BChE.desc.name )]
BChE.mol.desc = data.frame(BChE.desc.df2)
# Predicting unknown sequences
AChE.prediction <- data.frame(Prediction= predict(AChE.RF,AChE.mol.desc), round(predict(AChE.RF,AChE.mol.desc,type="prob"),3))
BChE.prediction <- data.frame(Prediction= predict(BChE.RF,BChE.mol.desc), round(predict(BChE.RF,BChE.mol.desc,type="prob"),3))
compoundname <- data.frame(AChE.desc.df$Name)
row.names(compoundname) <- AChE.desc.df$Name
results <- cbind(compoundname, AChE.prediction, BChE.prediction)
#names(results)[1] <- "Name"
names(results) <- c("Name","AChE.prediction","AChE.active","AChE.inactive","BChE.prediction","BChE.active","BChE.inactive")
results <- data.frame(results, row.names=NULL)
print(results)
}
else {
# Read data from uploaded file
x <- read.table(inFile$datapath)
# PADEL descriptors for Testing set
test <- x
try(system("bash PADEL.sh", intern = TRUE, ignore.stderr = TRUE))
#desc.df <- read.csv("descriptors_output.csv")
AChE.desc.df <- read.csv("descriptors_output.csv")
AChE.desc.df2 <- desc.df[,( names(desc.df) %in% desc.name )]
AChE.mol.desc = data.frame(desc.df2)
# Predicting unknown sequences
AChE.prediction <- data.frame(Prediction= predict(RFalpha,AChE.mol.desc), round(predict(RFalpha,AChE.mol.desc,type="prob"),3))
BChE.prediction <- data.frame(Prediction= predict(RFbeta,BChE.mol.desc), round(predict(RFbeta,BChE.mol.desc,type="prob"),3))
compoundname <- data.frame(AChE.mol.desc$Name)
row.names(compoundname) <- AChE.mol.desc$Name
results <- cbind(compoundname, AChE.prediction, BChE.prediction)
#names(results)[1] <- "Name"
names(results) <- c("Name","AChE.prediction","AChE.a.active","AChE.inactive","BChE.prediction","BChE.active","BChE.inactive")
results <- data.frame(results, row.names=NULL)
print(results)
}
}
})
output$contents <- renderPrint({
if (input$submitbutton>0) {
isolate(datasetInput())
} else {
return("Server is ready for prediction.")
}
})
output$downloadData <- downloadHandler(
filename = function() { paste('predicted_results', '.csv', sep='') },
content = function(file) {
write.csv(datasetInput(), file, row.names=FALSE)
})
})