-
Notifications
You must be signed in to change notification settings - Fork 60
/
cyAlphaDistribution.h
539 lines (501 loc) · 18.9 KB
/
cyAlphaDistribution.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// cyCodeBase by Cem Yuksel
// [www.cemyuksel.com]
//-------------------------------------------------------------------------------
//! \file cyAlphaDistribution.h
//! \author Cem Yuksel
//!
//! \brief Implementation of the alpha distribution methods.
//!
//! This file includes an implementation of the alpha distribution methods using
//! alpha pyramid and error diffusion used for pre-computing textures to be used
//! with alpha testing or sampleMask-to-alpha.
//!
//! Alpha testing using the original alpha values of a texture cannot handle
//! semi-transparent regions and often leads to problems with mipmapping. Alpha
//! distribution is a pre-processing approach that modifies the alpha values of
//! mipmap levels, such that they can properly handle semi-transparent regions.
//!
//! The AlphaDistribution class provided in this file implements two methods
//! that can be used for alpha distribution: error diffusion and alpha pyramid.
//! Both methods produce similar results with minor differences.
//!
//! More details can be found in the original publication:
//!
//! Cem Yuksel. 2017. Alpha Distribution for Alpha Testing. PACM on CGIT (I3D 2018).
//! http://www.cemyuksel.com/research/alphadistribution/
//!
//-------------------------------------------------------------------------------
//
// Copyright (c) 2018, Cem Yuksel <[email protected]>
// All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//-------------------------------------------------------------------------------
#ifndef _CY_ALPHA_DISTRIBUTION_H_INCLUDED_
#define _CY_ALPHA_DISTRIBUTION_H_INCLUDED_
//-------------------------------------------------------------------------------
#include <vector>
#include <random>
#include <cassert>
//-------------------------------------------------------------------------------
namespace cy {
//-------------------------------------------------------------------------------
//! An implementation of alpha distribution methods.
//! This implementation only works for textures with 8-bit channels.
//!
//! Cem Yuksel. 2017. Alpha Distribution for Alpha Testing. PACM on CGIT (I3D 2018).
//! http://www.cemyuksel.com/research/alphadistribution/
class AlphaDistribution
{
public:
enum Method {
METHOD_ERROR_DIF, //!< Error diffusion using Floyd–Steinberg dithering
METHOD_PYRAMID, //!< Alpha Pyramid
};
//! Fixes the alpha values of an image with the given width and height using the specified method.
//! If the image will be used with alpha-to-coverage, the spp parameter
//! should indicate the number of alpha samples; otherwise, it should be 1.
static void FixAlpha( Method method, unsigned char *alpha, int width, int height, int spp=1 )
{
assert(spp>=1);
if ( width*height == 1 ) {
alpha[0] = 255; // fix for single pixel
} else {
switch( method ) {
case METHOD_ERROR_DIF: ErrorDiffusion<1>(alpha,width,height,spp); break;
case METHOD_PYRAMID: AlphaPyramid <1>(alpha,width,height,spp); break;
}
}
}
//! Fixes the alpha values of an RGBA image with the given width and height using the specified method.
//! Only the alpha channel of the image is modified, the RGB values are not altered.
//! If the image will be used with alpha-to-coverage, the spp parameter
//! should indicate the number of alpha samples; otherwise, it should be 1.
static void FixAlphaRGBA( Method method, unsigned char *image, int width, int height, int spp=1 )
{
assert(spp>=1);
if ( width*height == 1 ) {
image[3] = 255; // fix for single pixel
} else {
switch( method ) {
case METHOD_ERROR_DIF: ErrorDiffusion<4>(image,width,height,spp); break;
case METHOD_PYRAMID: AlphaPyramid <4>(image,width,height,spp); break;
}
}
}
//! Generates a sample mask texture from the alpha values of an image with the given width and height.
//! This sample mask texture can be used with the original texture for handling alpha-to-coverage.
//! The spp parameter is the number of alpha samples that will be used.
template <typename SAMPLE_MASK_TYPE=unsigned char>
static void GenerateSampleMaskTexture( SAMPLE_MASK_TYPE *sampleMask, unsigned char const *alpha, int width, int height, int spp )
{
GenSampleMaskTexture<1>(sampleMask,alpha,width,height,spp);
}
//! Generates a sample mask texture from the alpha values of an RGBA image with the given width and height.
//! This sample mask texture can be used with the original texture for handling alpha-to-coverage.
//! The spp parameter is the number of alpha samples that will be used.
template <typename SAMPLE_MASK_TYPE=unsigned char>
static void GenerateSampleMaskTextureRGBA( SAMPLE_MASK_TYPE *sampleMask, unsigned char const *image, int width, int height, int spp )
{
GenSampleMaskTexture<4>(sampleMask,alpha,width,height,spp);
}
#if defined(__gl_h_) || defined(__GL_H__) || defined(_GL_H) || defined(__X_GL_H)
//!@name OpenGL Methods
//! Fixes the alpha values of a mipmap level of an OpenGL texture.
//! If the image will be used with alpha-to-coverage, the spp parameter
//! should indicate the number of alpha samples; otherwise, it should be 1.
static void FixTextureLevelAlpha( Method method, GLuint textureID, int level, int spp=1 )
{
int width=0, height=0;
glBindTexture(GL_TEXTURE_2D, textureID);
glGetTexLevelParameteriv(GL_TEXTURE_2D,level,GL_TEXTURE_WIDTH,&width);
glGetTexLevelParameteriv(GL_TEXTURE_2D,level,GL_TEXTURE_HEIGHT,&height);
if ( width * height == 0 ) return;
std::vector<unsigned char> image( width * height *4 );
glGetTexImage(GL_TEXTURE_2D,level,GL_RGBA,GL_UNSIGNED_BYTE,image.data());
FixAlphaRGBA( method, image.data(), width, height, spp );
glTexImage2D(GL_TEXTURE_2D,level,GL_RGBA,width,height,0,GL_RGBA,GL_UNSIGNED_BYTE,image.data());
}
//! Fixes the alpha values of all mipmap levels of an OpenGL texture, starting with the given level.
//! If the texture does not contain semi-transparent regions, modifying the first level (level zero)
//! is not advisable, since the original values might work better with magnification filtering.
//! If the image will be used with alpha-to-coverage, the spp parameter
//! should indicate the number of alpha samples; otherwise, it should be 1.
static void FixTextureAlpha( Method method, GLuint textureID, int startingLevel=0, int spp=1 )
{
int level = startingLevel;
int width, height;
glGetTexLevelParameteriv(GL_TEXTURE_2D,level,GL_TEXTURE_WIDTH, &width );
glGetTexLevelParameteriv(GL_TEXTURE_2D,level,GL_TEXTURE_HEIGHT,&height);
while ( width >= 1 && height >= 1 ) {
FixTextureLevelAlpha( method, textureID, level, spp );
level++;
glGetTexLevelParameteriv(GL_TEXTURE_2D,level,GL_TEXTURE_WIDTH, &width );
glGetTexLevelParameteriv(GL_TEXTURE_2D,level,GL_TEXTURE_HEIGHT,&height);
}
}
//! Fixes the alpha values of all mipmap levels of an OpenGL texture, starting with the given level.
//! If the texture does not contain semi-transparent regions, modifying the first level (level zero)
//! is not advisable, since the original values might work better with magnification filtering.
//! The number of alpha samples for alpha-to-coverage is obtained from the current OpenGL context.
static void FixTextureAlphaToSampleMask( Method method, GLuint textureID, int startingLevel=0 )
{
GLint spp;
glGetIntegerv(GL_SAMPLES, &spp);
if ( spp < 1 ) spp = 1;
FixTextureAlpha( method, textureID, startingLevel, spp );
}
#endif
private:
template <int NUM_CHANNELS>
static void ErrorDiffusion( unsigned char *image, int width, int height, int spp )
{
auto addError = [&]( int ix, int err ) {
int a = image[ix] + err;
if ( a < 0 ) a = 0;
if ( a > 255 ) a = 255;
image[ix] = a;
};
for ( int i=0, ih=0; ih<height; ih++ ) {
for ( int iw=0; iw<width; iw++, i++ ) {
int a0 = image[i*NUM_CHANNELS+(NUM_CHANNELS-1)]; // current value
int a1 = a0 >= 128 ? 255 : 0;
if ( spp > 1 ) {
for ( int j=1; j<=spp; j++ ) {
int cutoff = (256*(j*2-1)) / (spp*2);
if ( a0 < cutoff ) break;
a1 = (256*j) / spp;
}
if ( a1 > 255 ) a1 = 255;
}
image[i*NUM_CHANNELS+(NUM_CHANNELS-1)] = a1;
int err = a0 - a1;
int e[4] = { 7*err/16, 3*err/16, 5*err/16, 1*err/16 };
int de = err - (e[0]+e[1]+e[2]+e[3]);
e[0] += de;
if ( iw < width-1 ) addError( (i+1)*4+3, e[0] );
if ( ih < height-1 ) {
if ( iw > 0 ) addError( (width+i-1)*4+3, e[1] );
addError( (width+i)*4+3, e[2] );
if ( iw < width-1 ) addError( (width+i+1)*4+3, e[3] );
}
}
}
}
struct AlphaPyramidLevel
{
int width, height;
std::vector<uint32_t> alpha;
uint32_t total_alpha;
uint32_t GetAlpha(int x, int y) const { return alpha[ y*width + x ]; }
template <typename ARG_SCALE> void SetData( int w, int h, int prev_width, int prev_height, ARG_SCALE accessor )
{
total_alpha = 0;
width = w;
height = h;
alpha.resize(width*height);
for ( int ih=0; ih<height; ih++ ) {
for ( int iw=0; iw<width; iw++ ) {
uint32_t a0 = accessor( (ih*2 )*prev_width + iw*2 );
uint32_t a1 = accessor( (ih*2 )*prev_width + iw*2 + 1 );
uint32_t a2 = accessor( (ih*2 + 1)*prev_width + iw*2 );
uint32_t a3 = accessor( (ih*2 + 1)*prev_width + iw*2 + 1 );
alpha[ih*width+iw] = a0 + a1 + a2 + a3;
total_alpha += a0 + a1 + a2 + a3;
}
if ( width*2 < prev_width ) {
uint32_t a0 = accessor( (ih*2 )*prev_width + width*2 );
uint32_t a1 = accessor( (ih*2 + 1)*prev_width + width*2 );
alpha[(ih+1)*width-1] += a0 + a1;
total_alpha += a0 + a1;
}
}
if ( height*2 < prev_height ) {
int ii = (height-1)*width;
for ( int iw=0; iw<width; iw++ ) {
uint32_t a0 = accessor( (height*2)*prev_width + iw*2 );
uint32_t a1 = accessor( (height*2)*prev_width + iw*2 + 1 );
alpha[ii+iw] += a0 + a1;
total_alpha += a0 + a1;
}
if ( width*2 < prev_width ) {
uint32_t a0 = accessor( (height*2)*prev_width + width*2 );
alpha[ii+width-1] += a0;
total_alpha += a0;
}
}
}
void Alpha2CountBlock( int const *ix, int n, uint32_t count, int spp )
{
uint32_t sum = 0, remSum = 0;
for ( int j=0; j<n; j++ ) {
uint32_t v = alpha[ ix[j] ];
uint32_t c = v / 255;
uint32_t r = v % 255;
if ( spp > 1 ) {
c = (v*spp) / 255;
r = (v*spp) % 255;
}
sum += c;
remSum += r;
alpha[ ix[j] ] = (c << 8) | r;
}
assert( sum <= count );
assert( sum + remSum/255 + 1 >= count);
for ( uint32_t rem = count - sum; rem > 0; rem-- ) {
int max_i = 0;
uint32_t max_v;
int eqCount = 1;
max_v = alpha[ ix[0] ] & 255;
for ( int j=1; j<n; j++ ) {
uint32_t v = alpha[ ix[j] ] & 255;
if ( max_v < v ) {
max_v = v;
max_i = j;
eqCount = 1;
}
}
assert(max_v > 0);
alpha[ ix[max_i] ] += 256 - max_v;
}
for ( int j=0; j<n; j++ ) alpha[ ix[j] ] >>= 8;
}
void Alpha2Count( AlphaPyramidLevel const *parent, int spp )
{
int hLim = (height&1) ? height-3 : height;
int wLim = (width &1) ? width -3 : width;
for ( int ih=0; ih<hLim; ih+=2 ) {
for ( int iw=0; iw<wLim; iw+=2 ) {
uint32_t count = parent->GetAlpha(iw/2,ih/2);
int i = ih*width + iw;
int ix[] = { i, i+width+1, i+1, i+width };
Alpha2CountBlock( ix, 4, count, spp );
}
if ( wLim < width ) {
uint32_t count = parent->GetAlpha(wLim/2,ih/2);
int i = ih*width + wLim;
int ix[] = { i, i+width+1, i+2, i+width, i+1, i+width+2 };
Alpha2CountBlock( ix, 6, count, spp );
}
}
if ( hLim < height ) {
for ( int iw=0; iw<wLim; iw+=2 ) {
uint32_t count = parent->GetAlpha(iw/2,hLim/2);
int i = hLim*width + iw;
int ix[] = { i, i+width+1, i+width+width, i+1, i+width, i+width+width+1 };
Alpha2CountBlock( ix, 6, count, spp );
}
if ( wLim < width ) {
uint32_t count = parent->GetAlpha(wLim/2,hLim/2);
int i = hLim*width + wLim;
int ix[] = { i, i+width+width+2, i+2, i+width+width, i+width+1, i+1, i+width+width+1, i+width, i+width+2 };
Alpha2CountBlock( ix, 9, count, spp );
}
}
}
void Alpha2CountSimple( uint32_t count, int spp )
{
int n = width*height;
std::vector<int> ix(n);
for ( int i=0; i<n; i++ ) ix[i] = i;
Alpha2CountBlock( ix.data(), n, count, spp );
}
};
template <int NUM_CHANNELS>
static void AlphaPyramid( unsigned char *image, int width, int height, int spp )
{
// Step 1: Compute the alpha pyramid
std::vector<AlphaPyramidLevel*> pyramid;
int pw = width / 2;
int ph = height / 2;
if ( pw>0 && ph>0 ) {
// First level
uint32_t total_alpha = 0;
AlphaPyramidLevel *lev = new AlphaPyramidLevel;
lev->SetData( pw, ph, width, height, [&](int i){ return image[i*NUM_CHANNELS+(NUM_CHANNELS-1)]; } );
pyramid.push_back(lev);
// Higher levels
AlphaPyramidLevel *pLev = lev;
while ( pw>1 && ph>1 ) {
int ww = pw;
int hh = ph;
pw /= 2;
ph /= 2;
AlphaPyramidLevel *lev = new AlphaPyramidLevel;
lev->SetData( pw, ph, ww, hh, [&](int i){ return pLev->alpha[i]; } );
pyramid.push_back(lev);
pLev = lev;
}
}
// Step 2: Compute the number of texels that should pass the alpha test
uint32_t total_alpha = 0;
if ( width > 1 && height > 1 ) {
AlphaPyramidLevel *level = pyramid.back();
for ( int i=0; i<(int)level->alpha.size(); i++ ) {
total_alpha += level->alpha[i];
}
} else {
for ( int i=0; i<height*width; i++ ) {
uint32_t a0 = image[i*NUM_CHANNELS+(NUM_CHANNELS-1)]; // current value
total_alpha += a0;
}
}
int on_texels = (total_alpha*spp + 254) / 255;
// Step 3: Alpha to Count
int lvl = (int) pyramid.size() - 1;
if ( lvl >= 0 ) {
pyramid[lvl]->Alpha2CountSimple( on_texels, spp );
for ( lvl--; lvl>=0; lvl-- ) {
pyramid[lvl]->Alpha2Count( pyramid[lvl+1], spp );
}
}
// Step 4: Update texture
{
auto setImgAlpha = [&]( unsigned char *a, int const *ix, int n, uint32_t count )
{
if ( spp > 1 ) {
count *= 256/spp;
}
for ( int j=0; j<n; j++ ) a[j] = 0;
uint32_t remSum = 0;
uint32_t rem = count;
while ( rem > 0 ) {
int max_i = 0;
int max_v = image[ ix[0]*NUM_CHANNELS+(NUM_CHANNELS-1) ] - a[0];
if ( max_v < 0 ) max_v = 0;
for ( int j=1; j<n; j++ ) {
int v = image[ ix[j]*NUM_CHANNELS+(NUM_CHANNELS-1) ] - a[j];
if ( v < 0 ) v = 0;
if ( max_v < v ) {
max_v = v;
max_i = j;
}
}
assert(max_v > 0);
if ( spp > 1 ) {
unsigned char r = image[ ix[max_i]*NUM_CHANNELS+(NUM_CHANNELS-1) ] - a[max_i];
int inc = (r > 256/spp) ? (256/spp) : r;
if ( inc == 0 ) break;
int new_a = a[max_i] + (256/spp);
if ( new_a > 255 ) new_a = 255;
a[max_i] = new_a;
remSum -= inc;
if ( rem < uint32_t(256/spp) ) rem = 0;
else rem -= uint32_t(256/spp);
} else {
a[max_i] = image[ ix[max_i]*NUM_CHANNELS+(NUM_CHANNELS-1) ];
remSum -= max_v;
rem--;
}
}
if ( spp > 1 ) {
for ( int j=0; j<n; j++ ) {
int av = ((a[j] + 128 / spp) / (256/spp)) * (256/spp) + 1;
if ( av > 255 ) av = 255;
image[ ix[j]*NUM_CHANNELS+(NUM_CHANNELS-1) ] = av;
}
} else {
for ( int j=0; j<n; j++ ) image[ ix[j]*NUM_CHANNELS+(NUM_CHANNELS-1) ] = a[j] ? 255 : 0;
}
};
if ( pyramid.size() > 0 ) {
unsigned char tmpAlpha[9];
int hLim = (height&1) ? height-3 : height;
int wLim = (width&1) ? width -3 : width;
for ( int ih=0; ih<hLim; ih+=2 ) {
for ( int iw=0; iw<wLim; iw+=2 ) {
uint32_t count = pyramid[0]->GetAlpha(iw/2,ih/2);
int i = ih*width + iw;
int ix[] = { i, i+width+1, i+1, i+width };
setImgAlpha( tmpAlpha, ix, 4, count );
}
if ( wLim < width ) {
uint32_t count = pyramid[0]->GetAlpha(wLim/2,ih/2);
int i = ih*width + wLim;
int ix[] = { i, i+width+1, i+2, i+width, i+1, i+width+2 };
setImgAlpha( tmpAlpha, ix, 6, count );
}
}
if ( hLim < height ) {
for ( int iw=0; iw<wLim; iw+=2 ) {
uint32_t count = pyramid[0]->GetAlpha(iw/2,hLim/2);
int i = hLim*width + iw;
int ix[] = { i, i+width+1, i+width+width, i+1, i+width, i+width+width+1 };
setImgAlpha( tmpAlpha, ix, 6, count );
}
if ( wLim < width ) {
uint32_t count = pyramid[0]->GetAlpha(wLim/2,hLim/2);
int i = hLim*width + wLim;
int ix[] = { i, i+width+width+2, i+2, i+width+width, i+width+1, i+1, i+width+width+1, i+width, i+width+2 };
setImgAlpha( tmpAlpha, ix, 9, count );
}
}
} else {
// no pyramid
int size = width * height;
std::vector<int> ix(size);
std::vector<unsigned char> tmpAlpha(size);
for ( int i=0; i<size; i++ ) ix[i] = i;
setImgAlpha( tmpAlpha.data(), ix.data(), size, on_texels );
}
}
// Step 5: Clean up
for ( int i=0; i<(int)pyramid.size(); i++ ) delete pyramid[i];
pyramid.clear();
}
template <int NUM_CHANNELS, typename SAMPLE_MASK_TYPE=unsigned char>
static void GenSampleMaskTexture( SAMPLE_MASK_TYPE *sampleMask, unsigned char const *image, int width, int height, int spp )
{
std::random_device rd;
std::mt19937 gen( rd() );
std::uniform_int_distribution<int> rnd(0,spp-1);
for ( int i=0; i<width * height; i++ ) {
int a = image[i*NUM_CHANNELS+(NUM_CHANNELS-1)];
int a1 = 0;
for ( int j=1; j<=spp; j++ ) {
int cutoff = (256*(j*2-1)) / (spp*2);
if ( a < cutoff ) break;
a1 = (256*j) / spp;
}
int n = a1 / (256 / spp);
int sc = ( n > spp/2 ) ? spp - n : n;
int bits = 0;
for ( int j=0; j<sc; j++ ) {
while ( true ) {
int r = rnd(gen) % spp;
if ( (bits & (1<<r)) == 0 ) {
bits |= (1<<r);
break;
}
}
}
if ( n > spp/2 ) {
bits = ( (1 << spp) - 1 ) & (~bits);
}
sampleMask[i] = SAMPLE_MASK_TYPE(bits);
}
}
};
//-------------------------------------------------------------------------------
} // namespace cy
//-------------------------------------------------------------------------------
typedef cy::AlphaDistribution cyAlphaDistribution; //!< An implementation of alpha distribution methods
//-------------------------------------------------------------------------------
#endif