-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathdecoder.py
86 lines (67 loc) · 2.98 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""Decoder Network
PyTorch implementation of CapsNet in Sabour, Hinton et al.'s paper
Dynamic Routing Between Capsules. NIPS 2017.
https://arxiv.org/abs/1710.09829
Author: Cedric Chee
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
class Decoder(nn.Module):
"""
Implement Decoder structure in section 4.1, Figure 2 to reconstruct a digit
from the `DigitCaps` layer representation.
The decoder network consists of 3 fully connected layers. For each
[10, 16] output, we mask out the incorrect predictions, and send
the [16,] vector to the decoder network to reconstruct a [784,] size
image.
This Decoder network is used in training and prediction (testing).
"""
def __init__(self, num_classes, output_unit_size, input_width,
input_height, num_conv_in_channel, cuda_enabled):
"""
The decoder network consists of 3 fully connected layers, with
512, 1024, 784 (or 3072 for CIFAR10) neurons each.
"""
super(Decoder, self).__init__()
self.cuda_enabled = cuda_enabled
fc1_output_size = 512
fc2_output_size = 1024
self.fc3_output_size = input_width * input_height * num_conv_in_channel
self.fc1 = nn.Linear(num_classes * output_unit_size, fc1_output_size) # input dim 10 * 16.
self.fc2 = nn.Linear(fc1_output_size, fc2_output_size)
self.fc3 = nn.Linear(fc2_output_size, self.fc3_output_size)
# Activation functions
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x, target):
"""
We send the outputs of the `DigitCaps` layer, which is a
[batch_size, 10, 16] size tensor into the Decoder network, and
reconstruct a [batch_size, fc3_output_size] size tensor representing the image.
Args:
x: [batch_size, 10, 16] The output of the digit capsule.
target: [batch_size, 10] One-hot MNIST dataset labels.
Returns:
reconstruction: [batch_size, fc3_output_size] Tensor of reconstructed images.
"""
batch_size = target.size(0)
"""
First, do masking.
"""
# Method 1: mask with y.
# Note: we have not implement method 2 which is masking with true label.
# masked_caps shape: [batch_size, 10, 16, 1]
masked_caps = utils.mask(x, self.cuda_enabled)
"""
Second, reconstruct the images with 3 Fully Connected layers.
"""
# vector_j shape: [batch_size, 160=10*16]
vector_j = masked_caps.view(x.size(0), -1) # reshape the masked_caps tensor
# Forward pass of the network
fc1_out = self.relu(self.fc1(vector_j))
fc2_out = self.relu(self.fc2(fc1_out)) # shape: [batch_size, 1024]
reconstruction = self.sigmoid(self.fc3(fc2_out)) # shape: [batch_size, fc3_output_size]
assert reconstruction.size() == torch.Size([batch_size, self.fc3_output_size])
return reconstruction