-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path2.58.scm
executable file
·103 lines (76 loc) · 2.18 KB
/
2.58.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
(load "myhelpers.scm")
;Exercise 2.58
;SET UP
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
(else
(error "unknown expression type -- DERIV" exp))))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s) (caddr s))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p) (caddr p))
;: (deriv '(+ x 3) 'x)
;: (deriv '(* x y) 'x)
;: (deriv '(* (* x y) (+ x 3)) 'x)
;ANSWER
;Part A
;Change selectors. We only really need to change the augend and multiplicands along
;along with the predicates
;For sums
(define (addend s) (car s))
(define (sum? x)
(and (pair? x) (eq? (cadr x) '+)))
;Test
(d "Sum tests")
(define e1 '(1 + 4))
(assert (addend e1) 1)
(assert (augend e1) 4)
(assert (sum? e1) #t)
;For Products
(define (multiplier p) (car p))
(define (product? x)
(and (pair? x) (eq? (cadr x) '*)))
;tests
(d "Product Tests")
(define e2 '(3 * 9))
(assert (multiplier e2) 3)
(assert (multiplicand e2) 9)
(assert (product? e2) #t)
;Constructors
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list a1 '+ a2))))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list m1 '* m2))))
(d "Part A Deriv test")
(deriv '(x + (3 * (x + 2))) 'x)
(deriv '((8 * x) + (3 * x)) 'x)
(deriv '((8 * y) + (3 * (x + (2 * x)))) 'x)
;PART B
;For sums