-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSK_2000Biomass.R
294 lines (254 loc) · 12.9 KB
/
SK_2000Biomass.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#----------------------------------
# SK_2000 Biomass calculation for SK growth raster project
# Calculation biomass by tree to get plot estimate
# Maybe of volume per plot also...
#
# May 1, 2015
# CBoisvenue
# Revised June 4th, 2015
# decision to calculate biomass with the DBH only equations to minimize error inputs from height estimation
#
#----------------------------------
#1 Admin --------------
#install.packages("plyr")
require(plyr)
#install.packages("ggplot2")
require(ggplot2)
#install.packages("dplyr")
require(dplyr)
setwd("C:/Celine/CelineSync/RES_Work/Work/JoanneWhite/SK_work/data/CleanedUpForUsing/")
# Read-in Data-------------
sk.tree <- read.table("SK_2000PlotsCleaned.txt",sep=",",header=TRUE)
sk.tree <- unique(sk.tree)
# priority: calculate biomass from dbh and height, or from dbh alone -----------
# filling-in dbh
# no height
length(which(is.na(sk.tree$HEIGHT))) #6485
#no dbh
no.dbh1 = filter(sk.tree,is.na(DBH))# dim 4391 8
neither = filter(no.dbh1,is.na(HEIGHT)) #[1] 4384 8
# get rid of all off-plot trees---------------------------
# create a dataframe of OFF_PLOT_TREE
sk.age <- read.table("C:/Celine/Big_data/Data/01_RawFiles/SK/Release_2012-04/age_samples.csv", header=TRUE, sep=",")
off.plot = filter(sk.age,OFF_PLOT_TREE=="Y") %>%#dim 1571 14
select(PLOT_ID,TREE_NO,YEAR,OFF_PLOT_TREE)
off.plot=unique(off.plot)
off.plot1 <- left_join(sk.tree,off.plot)
biom1 <- filter(off.plot1,is.na(OFF_PLOT_TREE))
table(biom1$SPECIES)
# BF BP BS JP MM TA TL WB WS
# 9838 11751 139008 75007 3 146864 1478 10317 137488
# no more off-plot trees---------------------------------
# dbh check - how many with no dbh? Can I fill them? ------------------------------------------
no.dbh2 = filter(biom1,is.na(DBH))
dim(no.dbh2) #[1]4391 9 - same as for the sk.tree
# what species?
no.dbh.spsNA <- filter(no.dbh2,is.na(SPECIES))
dim(no.dbh.spsNA)#[1] 4268 9
# check for species in
no.dbh.sps <- filter(no.dbh2,!is.na(SPECIES))
dim(no.dbh.sps)#[1] 123 9
# there seems to be a missing species issue also -------------
table(biom1$SPECIES)
# BF BP BS JP MM TA TL WB WS
# 9838 11751 139008 75007 3 146864 1478 10317 137488
spsNA <- filter(biom1, is.na(SPECIES)) #42361 9
# are there species identified for that same tree in other years?
spscheck1 <- inner_join(spsNA,biom1,by=c("PLOT_ID","TREE_NO"))
dim(spscheck1)#[1] 92526 16
# Yes
# all?
spsNA1 <- group_by(spsNA,PLOT_ID, TREE_NO, YEAR) %>%
summarise(n=n())
dim(spsNA1)# 42361 5
spscheck2 <- filter(spscheck1,!is.na(SPECIES.y)) %>%
select(PLOT_ID, TREE_NO,YEAR=YEAR.x,-SPECIES.x,-DBH.x,-HEIGHT.x,-INGROWTH.x,-age.x,-OFF_PLOT_TREE.x,-YEAR.y,
SPECIES=SPECIES.y,-DBH.y,-HEIGHT.y,-INGROWTH.y,-age.y,-OFF_PLOT_TREE.y)
dim(spscheck2)
# more than one species per plot, tree?
spscheck3 <- group_by(spscheck2, PLOT_ID, TREE_NO) %>%
summarise(sps.no=n()) %>%
filter(sps.no>1)
dim(spscheck3)#[1] 10473 3
# yes 23%, select the 1st species
spscheck4 <- group_by(spscheck2,PLOT_ID,TREE_NO) %>%
summarize(SPECIES=first(SPECIES))
add.sps <- left_join(biom1,spscheck4,by=c("PLOT_ID","TREE_NO"))
SPECIES <- add.sps$SPECIES.x
SPECIES[is.na(add.sps$SPECIES.x)] = add.sps$SPECIES.y[is.na(add.sps$SPECIES.x)]
length(which(is.na(SPECIES))) #[1] 9597
biom2 <- cbind(biom1[,-4],SPECIES)
# Species fill-in with dom sps-----------------
plots.no.sps <- filter(biom2, is.na(SPECIES)) %>%
group_by(PLOT_ID) %>% summarise(count=n())
dim(plots.no.sps)#[1] 600 2
# calculate the dominant species for each plot for each year of measurement
# this is per demographics
dom1 <- group_by(biom2,PLOT_ID,YEAR) %>%
summarise(totaltrees=n())
dom2 <- group_by(biom2,PLOT_ID,YEAR,SPECIES) %>%
summarise(spstrees=n())
dom3 <- left_join(dom2,dom1) %>%
mutate(prop = spstrees/totaltrees) %>%
arrange(PLOT_ID,YEAR,prop) %>%
group_by(PLOT_ID,YEAR) %>%
summarise(dom=last(SPECIES))
dom3.NA <- filter(dom3,is.na(dom))
# 5 plots
biom3 <- left_join(biom2,dom3)
SPECIES <- biom3$SPECIES
SPECIES[is.na(biom3$SPECIES)] = biom3$dom[is.na(biom3$SPECIES)]
biom4 <- cbind(biom3[,-9],SPECIES)
#199 lines with no sps - why?
spsNA2 <- filter(biom4,is.na(SPECIES))
NA.plots <- as.data.frame(unique(spsNA2$PLOT_ID))
names(NA.plots)="PLOT_ID"
# check-out these plots
spsNA3 <- inner_join(biom4,NA.plots)
NA.1 <- filter(spsNA3, PLOT_ID==222213)# all NAs for this plot will be replaced by JP - do it in dom3
NA.2 <- filter(spsNA3, PLOT_ID==300311) # all NAs in this plot will be replaced by WS
NA.3 <- filter(spsNA3, PLOT_ID==322325) # all NAs in this plot will be replaced by WS
NA.4 <- filter(spsNA3, PLOT_ID==910033) # all NAs in this plot will be replaced by JP
NA.5 <- filter(spsNA3, PLOT_ID==910075) # all NAs in this plot will be replaced by JP
dom4 <- dom3
dom4[dom3$PLOT_ID==222213,3] <- "JP"
dom4[dom3$PLOT_ID==300311,3] <- "WS"
dom4[dom3$PLOT_ID==322325,3] <- "WS"
dom4[dom3$PLOT_ID==910033,3] <- "JP"
dom4[dom3$PLOT_ID==910075,3] <- "JP"
biom5 <- left_join(biom2,dom4)
SPECIES <- biom5$SPECIES
SPECIES[is.na(biom5$SPECIES)] = biom5$dom[is.na(biom5$SPECIES)]
biom6 <- cbind(biom5[,-9],SPECIES)
dim(filter(biom6,is.na(SPECIES)))
# End of sepcies fill-in-----------------------
# No more missing species------------------------------------
# are there any other dbh measurements for those trees in that same year?--
no.dbh3 <- filter(biom6,is.na(DBH))
dbh.0 <- filter(biom6,DBH==0)
no.dbh.0 = rbind(no.dbh3,dbh.0)
no.dbh.trees = select(no.dbh.0,PLOT_ID,TREE_NO,YEAR)
no.dbh.trees = unique(no.dbh.trees)
no.dbh.trees1 <- left_join(no.dbh.trees,biom6)
hist(no.dbh.trees1$age) # ages between 60-120
# NO----------------------------------------------------------------------
# assign the avg dbh for that species on that plot for that year-----
dbh1 <- group_by(biom6,PLOT_ID,YEAR,SPECIES) %>%
summarise(dbh.bar = mean(DBH,na.rm=TRUE))
dbh2 <- group_by(biom6,PLOT_ID,YEAR) %>%
summarise(dbh.bar2 = mean(DBH,na.rm=TRUE))
dbh3 <- inner_join(dbh1,dbh2)
DBH.bar <- dbh3$dbh.bar
DBH.bar[which(is.na(dbh3$dbh.bar))] <- dbh3$dbh.bar2[which(is.na(dbh3$dbh.bar))]
# still have 0s...
dbh4 <- filter(dbh3,dbh.bar==0)
dbh5 <- inner_join(dbh4,biom6)
# ok, all the dbh.bar = 0 lines have 80+ ages, so replace the DBH.bar with dbh.bar2
DBH.bar[which(dbh3$dbh.bar==0)] <- dbh3$dbh.bar2[which(dbh3$dbh.bar==0)]
dbh6 <- cbind(dbh3,DBH.bar)
dbh7 <- select(dbh6,-dbh.bar,-dbh.bar2)
dbh.add <- left_join(no.dbh.0,dbh7) %>%
select(PLOT_ID,TREE_NO,YEAR,SPECIES,DBH.bar)
biom7 <- left_join(biom6,dbh.add)
biom7$DBH[which(is.na(biom7$DBH))] <- biom7$DBH.bar[which(is.na(biom7$DBH))]
biom7.1 <- filter(biom7,DBH==0)
biom7$DBH[which(biom7$DBH==0)] <- biom7$DBH.bar[which(biom7$DBH==0)]
# How many have dbh=0?
dbh.0 <- filter(biom7,DBH==0)
# 0
biom8 <- select(biom7,-OFF_PLOT_TREE,-DBH.bar)
# End of DBH fill-in, all lines have a dbh--------------------------------------------------------
# HEIGHTS ----------------------------------------------------------------------------------------
#how many heights missing?
no.ht <- filter(biom8, is.na(HEIGHT))
dim(no.ht)# 6475 9 - so 1.127823% of the total no of measurements
# Calculating heights for each tree using the SK ht-diam model form and estimated parameters------
ht.models <- read.table("G:/RES_Work/Work/JoanneWhite/SK_work/data/CleanedUpForUsing/height_dbh_models.csv",header=TRUE, sep=",")
ht.params <- mutate(ht.models,beta1=BETA1,beta2=BETA2,beta3=BETA3) %>%
select(-BETA1,-BETA2,-BETA3)
ht.calc <- left_join(biom8,ht.params) %>% mutate(dbh=DBH) %>% select(-DBH)
ht.calc2 <- mutate(ht.calc,step1 = 1.3+beta1*(1-exp(-1*beta2*dbh))^beta3,step2=(1-exp(-1*beta2*dbh))^beta3,
step3 = beta1*log(1-exp(-1*beta2*dbh))*((1-exp(-1*beta2*dbh))^beta3),
step4 = step1+b1*step2+b3*step3, compare.ht = HEIGHT-round(step4)) %>%
select(PLOT_ID,TREE_NO,YEAR,SPECIES,dbh,HEIGHT,age,dom,step4,compare.ht)
ht.na <- filter(ht.calc2, is.na(HEIGHT)) # 6475 10
ht.calc2$HEIGHT[which(is.na(ht.calc$HEIGHT))] <- ht.calc2$step4[which(is.na(ht.calc$HEIGHT))]
ht.na <- filter(ht.calc2, is.na(HEIGHT)) # 1 10
# plot 300105 tree 17
ht.na1 <- filter(ht.calc2,PLOT_ID==300105,TREE_NO==17) # one tree
#
ht.na2 <- filter(ht.params,PLOT_ID==300105)
ht.na3 <- filter(biom8,PLOT_ID==300105,TREE_NO==17)
# THis is why this height did not get calculated: there are no BP in that plot to build a height model
ht.BP <- filter(ht.params,SPECIES=="BP")
no.ht.BP.plots <- unique(ht.BP$PLOT_ID)
# going to use the parameters from another plots #300106
BP.dbh = 27.24283
ht.BP.calc1 <- filter(ht.params,PLOT_ID==300106,SPECIES=="BP") %>%
mutate(step1 = 1.3+beta1*(1-exp(-1*beta2*BP.dbh))^beta3,step2=(1-exp(-1*beta2*BP.dbh))^beta3,
step3 = beta1*log(1-exp(-1*beta2*BP.dbh))*((1-exp(-1*beta2*BP.dbh))^beta3),
BP.ht = step1+b1*step2+b3*step3)
ht.calc2$HEIGHT[(ht.calc2$PLOT_ID==300105 &ht.calc2$TREE_NO==17)] <- ht.BP.calc1$BP.ht
ht.na <- filter(ht.calc2, is.na(HEIGHT)) # 1 10
# END of calculating heights --------------------------------------------------------------------------
# these should be equal...final check
biom9 <- select(ht.calc2,PLOT_ID,TREE_NO,YEAR,SPECIES,DBH=dbh,HEIGHT,age,dom)
## NOTE: checked on June 23rd, 2015 - this data frame mathces the saved one
write.table(biom9,file="C:/Celine/CelineSync/RES_Work/Work/JoanneWhite/SK_work/data/CleanedUpForUsing/SK_2000TreeMeasurements.csv",sep=",")
###############IMPORTANT DATA FRAME
######### This dataframe has all the info to calculate biomass or volume per tree
# Biomass calculations -------------------------------------------------------------------------
# Calculate biomass for all trees in data frame-------------------------------------------------
# calculate biomass for all trees with dbh by year
params1 <- read.table("C:/Celine/CelineSync/RES_Work/Work/JoanneWhite/SK_work/GrowthRaster/BiomassEstimation/SK_SPSBiomassParametersChecked.csv",sep=",", header=TRUE)
params2 <- read.table("C:/Celine/CelineSync/RES_Work/Work/JoanneWhite/SK_work/GrowthRaster/BiomassEstimation/SK_SPSBiomassParametersCheckedDBH_only.csv",sep=",", header=TRUE)
params2 <- params2[1:9,1:9]
# biomass
biom.tree1 <- left_join(biom9,params2)
biom.dbh <- mutate(biom.tree1,wood.dbh=b1w*(DBH^b2w),bark.dbh =b1b*(DBH^b2b),
branches.dbh = b1br*(DBH^b2br),foliage.dbh = b1f*(DBH^b2f),
biom.dbh = wood.dbh+bark.dbh+foliage.dbh+branches.dbh) %>%
select(PLOT_ID,TREE_NO,YEAR,SPECIES,HEIGHT,age,DBH,wood.dbh,bark.dbh,branches.dbh,foliage.dbh,biom.dbh)
biom.tree2 <- left_join(biom9,params1)
biom.tree3 <- mutate(biom.tree2,wood=b1w*(DBH^b2w)*(HEIGHT^b3w),bark =b1b*(DBH^b2b)*(HEIGHT^b3b),
branches = b1br*(DBH^b2br)*(HEIGHT^b3br),foliage = b1f*(DBH^b2f)*(HEIGHT^b3f),
biomass = wood+bark+foliage+branches) %>%
select(PLOT_ID,TREE_NO,YEAR,SPECIES,dom, HEIGHT,age,DBH,wood,bark,branches,foliage,biomass)
biom.tree4 <- inner_join(biom.tree3,biom.dbh)
write.table(biom.tree4,file="C:/Celine/CelineSync/RES_Work/Work/JoanneWhite/SK_work/data/CleanedUpForUsing/SK_2000TreeBiomass.csv",sep=",",row.names = FALSE)
# biomass from these equations are in kg
ggplot(data=biom.tree4) + geom_bar(aes(biomass, fill=SPECIES),colour="black")
# there might only be one tree over 1000
biomcheck1 <- filter(biom.tree4,biomass>=1000)
ggplot(data=biomcheck1) + geom_bar(aes(biomass, fill=SPECIES),colour="black")
dim(biomcheck1)#[1] 460 12
biomcheck2 <- filter(biom.tree4, biomass<1000)
ggplot(data=biomcheck2) + geom_bar(aes(biomass, fill=SPECIES),colour="black")
# distribution looks ok
# Results ok
# End of calculating biomass per tree--------------------------------------------------------------
#Calculate plot level biomass by year -------------------
plot.biom <- group_by(biom.tree4,PLOT_ID,YEAR) %>%
summarise(sumbiom=sum(biomass))
# get plot size
plot.size <-read.table("C:/Celine/CelineSync/RES_Work/Work/JoanneWhite/SK_work/GrowthRaster/BiomassEstimation/measurement_header.csv",sep=",", header=TRUE)
plot.size <- plot.size[,c(1,3,16,20)]
checksize <- group_by(plot.size,PLOT_ID) %>%
summarise(mean=mean(PLOT_SIZE))
checksize2 <- left_join(plot.size,checksize)
sizediff <- mutate(checksize2,diff=PLOT_SIZE-mean)
range(sizediff$diff)
# plot size does not change over time
ecocheck <- group_by(plot.size,PLOT_ID) %>%
summarise(neco=n()) %>%
filter(neco>1)
ecocheck <- unique(ecocheck)
#there are 1378 plots with more then one ecosite
plot.size1 <- unique(plot.size[,c(1,2)])
#for Sasha
#write.table(plot.size1,file="G:/RES_Work/Work/Analysis_PSPs/SashaHararuk/plotSize.txt",sep=",",row.names = FALSE)
# biomass per ha per plot per year, divide by 1000 to have the units in t/ha or Mg/ha (those are equivalent)
biom.ha <- left_join(plot.biom,plot.size1) %>%
mutate(biom.ha = (sumbiom/PLOT_SIZE)/1000) %>%
select(PLOT_ID,YEAR,biom.ha)
write.table(biom.ha,file="C:/Celine/CelineSync/RES_Work/Work/JoanneWhite/SK_work/data/CleanedUpForUsing/SK_2000Biomass_ha.txt",sep=",",row.names=FALSE)