-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathvo_trajectory_from_folder.py
145 lines (125 loc) · 6.81 KB
/
vo_trajectory_from_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from torch.utils.data import DataLoader
from Datasets.utils import ToTensor, Compose, CropCenter, ResizeData, dataset_intrinsics, DownscaleFlow
from Datasets.utils import plot_traj, visflow, load_kiiti_intrinsics, load_sceneflow_extrinsics
from Datasets.tartanTrajFlowDataset import TrajFolderDataset
from evaluator.transformation import pose_quats2motion_ses, motion_ses2pose_quats
from evaluator.tartanair_evaluator import TartanAirEvaluator
from evaluator.evaluator_base import per_frame_scale_alignment
from DytanVO import DytanVO
import argparse
import numpy as np
import cv2
from os import mkdir
from os.path import isdir
def get_args():
parser = argparse.ArgumentParser(description='Inference code of DytanVO')
parser.add_argument('--batch-size', type=int, default=1,
help='batch size (default: 1)')
parser.add_argument('--worker-num', type=int, default=1,
help='data loader worker number (default: 1)')
parser.add_argument('--image-width', type=int, default=640,
help='image width (default: 640)')
parser.add_argument('--image-height', type=int, default=448,
help='image height (default: 448)')
parser.add_argument('--vo-model-name', default='',
help='name of pretrained VO model (default: "")')
parser.add_argument('--flow-model-name', default='',
help='name of pretrained flow model (default: "")')
parser.add_argument('--pose-model-name', default='',
help='name of pretrained pose model (default: "")')
parser.add_argument('--seg-model-name', default='',
help='name of pretrained segmentation model (default: "")')
parser.add_argument('--airdos', action='store_true', default=False,
help='airdos test (default: False)')
parser.add_argument('--rs_d435', action='store_true', default=False,
help='realsense d435i test (default: False)')
parser.add_argument('--sceneflow', action='store_true', default=False,
help='sceneflow test (default: False)')
parser.add_argument('--kitti', action='store_true', default=False,
help='kitti test (default: False)')
parser.add_argument('--commaai', action='store_true', default=False,
help='commaai test (default: False)')
parser.add_argument('--kitti-intrinsics-file', default='',
help='kitti intrinsics file calib.txt (default: )')
parser.add_argument('--test-dir', default='',
help='test trajectory folder where the RGB images are (default: "")')
parser.add_argument('--pose-file', default='',
help='test trajectory gt pose file, used for scale calculation, and visualization (default: "")')
parser.add_argument('--save-flow', action='store_true', default=False,
help='save optical flow (default: False)')
parser.add_argument('--seg-thresh', type=float, default=0.7,
help='threshold for motion segmentation')
parser.add_argument('--iter-num', type=int, default=2,
help='number of iterations')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
testvo = DytanVO(args.vo_model_name, args.seg_model_name, args.image_height, args.image_width,
args.kitti, args.flow_model_name, args.pose_model_name)
# load trajectory data from a folder
if args.kitti:
datastr = 'kitti'
elif args.airdos:
datastr = 'airdos'
elif args.rs_d435:
datastr = 'rs_d435'
elif args.sceneflow:
datastr = 'sceneflow'
elif args.commaai:
datastr = 'commaai'
else:
datastr = 'tartanair'
focalx, focaly, centerx, centery, baseline = dataset_intrinsics(datastr, '15mm' in args.test_dir)
if args.kitti_intrinsics_file.endswith('.txt') and datastr == 'kitti':
focalx, focaly, centerx, centery, baseline = load_kiiti_intrinsics(args.kitti_intrinsics_file)
if datastr == 'kitti':
transform = Compose([ResizeData((args.image_height, 1226)), CropCenter((args.image_height, args.image_width)), DownscaleFlow(), ToTensor()])
else:
transform = Compose([CropCenter((args.image_height, args.image_width)), DownscaleFlow(), ToTensor()])
testDataset = TrajFolderDataset(args.test_dir, transform=transform,
focalx=focalx, focaly=focaly, centerx=centerx, centery=centery)
testDataloader = DataLoader(testDataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.worker_num)
testDataiter = iter(testDataloader)
motionlist = []
testname = datastr + '_' + args.vo_model_name.split('.')[0] + '_' + args.test_dir.split('/')[-1]
if args.save_flow:
flowdir = 'results/'+testname+'_flow'
if not isdir(flowdir):
mkdir(flowdir)
flowcount = 0
while True:
try:
sample = testDataiter.next()
except StopIteration:
break
motion, flow = testvo.test_batch(sample, [focalx, centerx, centery, baseline], args.seg_thresh, args.iter_num)
motionlist.append(motion)
if args.save_flow:
for k in range(flow.shape[0]):
flowk = flow[k].transpose(1,2,0)
np.save(flowdir+'/'+str(flowcount).zfill(6)+'.npy',flowk)
flow_vis = visflow(flowk)
cv2.imwrite(flowdir+'/'+str(flowcount).zfill(6)+'.png',flow_vis)
flowcount += 1
motions = np.array(motionlist)
# calculate ATE, RPE, KITTI-RPE
if args.pose_file.endswith('.txt'):
if datastr == 'sceneflow':
gtposes = load_sceneflow_extrinsics(args.pose_file)
else:
gtposes = np.loadtxt(args.pose_file)
if datastr == 'airdos':
gtposes = gtposes[:,1:] # remove the first column of timestamps
gtmotions = pose_quats2motion_ses(gtposes)
estmotion_scale = per_frame_scale_alignment(gtmotions, motions)
estposes = motion_ses2pose_quats(estmotion_scale)
evaluator = TartanAirEvaluator()
results = evaluator.evaluate_one_trajectory(gtposes, estposes, scale=True, kittitype=(datastr=='kitti'))
print("==> ATE: %.4f,\t KITTI-R/t: %.4f, %.4f" %(results['ate_score'], results['kitti_score'][0], results['kitti_score'][1]))
# save results and visualization
plot_traj(results['gt_aligned'], results['est_aligned'], vis=False, savefigname='results/'+testname+'.png', title='ATE %.4f' %(results['ate_score']))
np.savetxt('results/'+testname+'.txt',results['est_aligned'])
else:
np.savetxt('results/'+testname+'.txt', motion_ses2pose_quats(motions))