-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathNCISlideUtil.py
188 lines (162 loc) · 6.89 KB
/
NCISlideUtil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import csv
import subprocess
import time
from multiprocessing.pool import ThreadPool
import json
import openslide
import os
import requests
from dev_utils import file_md5
from dev_utils import postslide
from dev_utils import post_url
from make_thumbs import make_thumbnails
# GLOBALS (for now)
# config = {'thumbnail_size': 100, 'thread_limit': 20}
config = {'thread_limit': 20}
manifest_path = 'manifest.csv'
# NCI DOE added flat file START
collections_path = 'specialties_list.json'
flat_file_path = 'flat_file.csv'
# NCI DOE added flat file END
# process expects a single image metadata as dictionary
def process(img):
# check slides
sid = None
token_id = img['token_id']
slide_name = img['name']
res = requests.get(slide_find_url, params={'name': slide_name})
if res.status_code == 200:
rs = res.json()
# the slide doesn't exist
if len(rs) < 1:
try:
img = openslidedata(img)
img['study'] = img.get('study', "")
img['specimen'] = img.get('specimen', "")
img['location'] = img['location'] or img['filename']
img = postslide(img, post_url)
res = requests.get(slide_find_url, params={'name': slide_name})
sid = res.json()[0]['_id']['$oid']
print('process img:')
print(img)
except BaseException as e:
img['_status'] = e
else:
sid = res.json()[0]['_id']['$oid']
print(sid)
img['_status'] = 'existed'
# add slide to collection
cid = subspecialties_map.get(token_id.lower())
if sid is not None or cid is not None:
res = requests.post(add_slide_to_collection_url, data=json.dumps({'cid': cid, 'sids': [sid]}), headers={
'content-type': 'application/json'})
return img
else:
img['_status'] = res.status_code
return img
def gen_thumbnail(filename, slide, size, imgtype="png"):
dest = filename + "." + imgtype
slide.get_thumbnail([size, size]).save(dest, imgtype.upper())
def openslidedata(metadata):
slide = openslide.OpenSlide(metadata['location'])
slideData = slide.properties
metadata['mpp-x'] = slideData.get(openslide.PROPERTY_NAME_MPP_X, None)
metadata['mpp-y'] = slideData.get(openslide.PROPERTY_NAME_MPP_Y, None)
metadata['mpp'] = metadata['mpp-x'] or metadata['mpp-x'] or None
metadata['height'] = slideData.get(
openslide.PROPERTY_NAME_BOUNDS_HEIGHT, None)
metadata['width'] = slideData.get(
openslide.PROPERTY_NAME_BOUNDS_WIDTH, None)
metadata['vendor'] = slideData.get(openslide.PROPERTY_NAME_VENDOR, None)
metadata['comment'] = slideData.get(openslide.PROPERTY_NAME_COMMENT, None)
metadata['level_count'] = int(slideData.get('level_count', 1))
metadata['objective'] = float(slideData.get("aperio.AppMag", 0.0))
metadata['md5sum'] = file_md5(metadata['location'])
# NCI DOE metadata START
if metadata['height'] is None:
metadata['height'] = slideData.get('aperio.OriginalHeight', None)
if metadata['height'] is None:
metadata['height'] = slideData.get('openslide.level[0].height', None)
if metadata['width'] is None:
metadata['width'] = slideData.get('aperio.OriginalWidth', None)
if metadata['width'] is None:
metadata['width'] = slideData.get('openslide.level[0].width', None)
metadata['token_id'] = slideData.get(
'aperio.CustomField.TokenID', metadata['token_id'])
metadata['proc_seq'] = slideData.get('aperio.CustomField.Proc_Seq', None)
metadata['spec_site'] = slideData.get('aperio.CustomField.Spec_Site', None)
metadata['image_id'] = slideData.get('aperio.CustomField.ImageID', None)
flat_matedata = flat_map[metadata['token_id'].lower()]
metadata['registry_code'] = flat_matedata.get('registry', None)
metadata['primary_tumor_site_code'] = flat_matedata.get(
'primary_site', None)
metadata['primary_tumor_site_term'] = flat_matedata.get('site_text', None)
metadata['morphology_code'] = flat_matedata.get('histology_icdo3', None)
metadata['seer_coded_histology'] = flat_matedata.get('hist_text', None)
metadata['behavior_code'] = flat_matedata.get('behavior_icdo3', None)
metadata['timestamp'] = time.time()
# NCI DOE metadata END
thumbnail_size = config.get('thumbnail_size', None)
if thumbnail_size:
gen_thumbnail(metadata['location'], slide, thumbnail_size)
return metadata
# NCI DOE create a metadata dict START
flat_map = {}
subspecialties_map = {}
slide_find_url = 'http://ca-back:4010/data/Slide/find'
slide_post_url = 'http://ca-back:4010/data/Slide/post'
collection_find_url = 'http://ca-back:4010/data/Collection/find'
collection_post_url = 'http://ca-back:4010/data/Collection/post'
add_slide_to_collection_url = 'http://ca-back:4010/data/Collection/addSlidesToCollection'
def addSpecialty(data):
# check specialty exists
res = requests.get(collection_find_url, params=data)
if res.status_code == 200:
rs = res.json()
# return collection id if exist
if len(rs) > 0:
return rs[0]['_id']['$oid']
# add the new one and return collection id if not exist
else:
res = requests.post(collection_post_url, data=json.dumps(data), headers={
'content-type': 'application/json'})
return res.json()['ops'][0]['_id']
else:
return None
# read the specialty list
if os.path.exists(collections_path):
with open(collections_path, 'r', encoding='utf-8-sig') as j:
collections = json.load(j)
for collection in collections:
# add specialty
pid = addSpecialty({'text': collection['specialty']})
# add users
users = []
for user in collection['pathologists']:
users.append({'user': user})
for sub in collection['subspecialties']:
# add specialty
cid = addSpecialty(
{'text': sub, 'pid': pid, 'users': users})
# save the token id and collection id as map
if cid is not None:
subspecialties_map[sub.lower()] = cid
# get flat file and create dict as map [tokenId, data]
with open(flat_file_path, 'r', encoding='utf-8-sig') as f:
reader = csv.DictReader(f)
for row in reader:
token = row['tokenid'] or row['token_id'] or None
if token:
flat_map[row['tokenid'].lower()] = row
else:
print('no token id in flat_file')
# NCI DOE create a metadata dict END
# get manifest
with open(manifest_path, 'r') as f:
reader = csv.DictReader(f)
manifest = [row for row in reader]
thread_limit = config.get('thread_limit', 10)
# run process on each image
res = ThreadPool(thread_limit).imap_unordered(process, manifest)
print([r for r in res])
make_thumbnails()