-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_data_file.py
592 lines (488 loc) · 29.1 KB
/
build_data_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import os
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import numpy as np
import pandas as pd
from scipy.stats import zscore
import pubchempy as pcp
from rdkit import Chem
'''
Changing Directory
'''
wrk_path_1 = r"C:\Users\calvi\OneDrive\Documents\2020\Liposomes Vitamins\LiposomeFormulation"
wrk_path_2 = r"C:\Users\Calvin\OneDrive\Documents\2020\Liposomes Vitamins\LiposomeFormulation"
wrk_path_3 = r"/Users/calvin/Documents/OneDrive/Documents/2020/Liposomes Vitamins/LiposomeFormulation"
data_output_path_1 = r"/Users/calvin/Documents/OneDrive/Documents/2022/Data_Output"
data_output_path_2 = r"C:\Users\Calvin\OneDrive\Documents\2022\Data_Output"
if os.name == 'posix':
os.chdir(wrk_path_3)
print("Utilising MacBook")
else:
try:
os.chdir(wrk_path_2)
print("Utilising Home Pathway")
except OSError:
os.chdir(wrk_path_1)
print("Utilising Lab Pathway")
'''
Data Files
File Names:
Set the three file names as variables. Files required:
Formulation Master (FM) Excel
Aggregation Result CSVs
DLS Files
'''
master_file = r"LiposomeMasterFile_Fixed.xlsm"
results_file = r"Results.xlsx"
path_dls = r"/Users/calvin/Documents/OneDrive/Documents/2020/Liposomes Vitamins/DLS Data/GUID Versions"
'''
Extracting Data
FM Sheets
The FM excel file contains individual sheets with the specific formulations used. They are to be extracted into one
DataFrame. There are 4 Sheets that need to be ignored:
Sheet1
Data
Template
Component MWT
'''
class DataBuild:
def __init__(self, master_file: str=r"LiposomeMasterFile_Fixed.xlsm", results_file: str= r"Results.xlsx"):
self.extracted_sheets = []
self.ignore_sheets = ['Sheet1', 'Data', 'Template', 'Component MWT']
self.master_file = master_file
self.results_file = results_file
self.data_sheet = None
self.formulation_sheet = None
self.path_dls = r"/Users/calvin/Documents/OneDrive/Documents/2020/Liposomes Vitamins/DLS Data/GUID Versions"
self.files = []
self.dls_data = pd.DataFrame()
def read_in_data_sheets(self):
tmp_df = pd.read_excel(self.master_file, sheet_name=None)
df = pd.DataFrame()
for key, value in tmp_df.items():
if key in self.ignore_sheets:
continue
self.extracted_sheets.append(key)
df = df.append(value, ignore_index=True)
df["Sample"] = df['Experiment'].str.replace(r"(_)([A-Z])(\d*)(?=\b)$", r"", regex=True)
df.replace(np.nan, 0, inplace=True)
self.data_sheet = df
return self.data_sheet
def read_formulation_sheet(self):
data_df = pd.read_excel(self.master_file, sheet_name='Data', skiprows=[0])
data_df.replace(np.nan, 0, inplace=True)
self.formulation_sheet = data_df
return self.formulation_sheet
def merge_sheets_and_data_check(self):
merge_df = pd.merge(self.formulation_sheet, self.data_sheet, how="outer", left_on="GUID",
right_on="Sample")
merge_fail_guid = np.where(pd.isnull(merge_df['GUID']))
merge_fail_sample = np.where(pd.isnull(merge_df['Sample']))
print("Join failure on GUID:")
print(merge_fail_guid)
print("---------------------------------------------")
print("Join failure on Sample:")
print(merge_fail_sample)
if len(merge_fail_guid) != 0:
for i in merge_fail_guid:
print("Information on GUID join fails")
print(merge_df.iloc[i])
if len(merge_fail_sample) != 0:
for i in merge_fail_sample:
print("Information on Sample join fails")
print(merge_df.iloc[i])
# Final Concentration Add
merge_df['Final_Concentration'] = ((merge_df['Ratio_1'] * merge_df["component_1_vol_conc"] * (
merge_df['final_lipid_volume'] / 1000)) + (merge_df['Ratio_2'] * merge_df['component_2_vol_conc'] * (
merge_df['final_lipid_volume'] / 1000)) + (merge_df['Ratio_3'] * merge_df['component_3_vol_conc'] * (
merge_df['final_lipid_volume'] / 1000)) + (merge_df['Ratio_4'] * merge_df['Concentration_4'] * (
merge_df['final_lipid_volume'] / 1000))) / (merge_df['Final_Vol'])
print("Checking for NaNs...")
print(merge_df.isnull().values.any())
self.formulation_df = merge_df
return self.formulation_df
def read_results_file(self):
results_df = pd.read_excel(self.results_file)
print(results_df.shape)
# GUID & Experiment need to be combined for the joining process as well as removing unnecessary columns
results_df['experiment_comb'] = results_df['GUID'] + str("_") + results_df['Experiment']
results_df.drop(columns=['Experiment', 'GUID'], inplace=True)
print(results_df.head())
self.results_df = results_df
return self.results_df
def merge_formu_results(self):
merge_results_df = pd.merge(self.formulation_df, self.results_df, how="outer", left_on="Experiment",
right_on="experiment_comb").reset_index(drop=True)
print("Rows with NaN values...")
print(merge_results_df[merge_results_df.isnull().any(axis=1)])
self.formulation_results = merge_results_df
return self.formulation_results
def missing_aggregation_check(self):
missing_aggregation_df = self.formulation_results[self.formulation_results['experiment_comb'].isna()]
self.list_missing_aggregation = list(missing_aggregation_df['GUID'].unique())
print("Number of total possible experiments that have not had their aggregation recorded",
len(missing_aggregation_df['GUID']))
print("Number of unique experiments that have not had their aggregation recorded: ",
len(self.list_missing_aggregation))
def extract_dls_data(self):
for (dirpath, dirnames, filenames) in os.walk(self.path_dls):
self.files.extend(filenames)
# print(files)
for f in self.files:
if f.endswith(('.csv', '.CSV')):
print(str(f))
dw = pd.read_csv(os.path.join(self.path_dls, f), encoding="ISO-8859-8")
self.dls_data = self.dls_data.append(dw, ignore_index=True)
return self.dls_data
def clean_dls_data(self):
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.strip() # Clean up white spaces
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(?=)(\s)(\d)", "",
regex=True) # Remove the numbers proceeding the D(value)
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(\s)(?<=)(\-)(?=)(\s)", "_",
regex=True) # Change the - into an _
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(?<=[A-Z]|\d)(\s)(?=\D)", "_",
regex=True) # Put an underscore between the GUID and D(value)
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(_FILTERED)", "",
regex=True) # Unique instance of putting the
# word filtered in dls naming
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(_FILTERED\d+)", "", regex=True)
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.strip() # For good measure
self.list_dls_unique_scans = list(self.dls_data['Sample Name'].unique())
print("Number of unique DLS scans:", self.dls_data['Sample Name'].nunique())
print("DLS Samples Scanned: ", *iter(self.list_dls_unique_scans), sep=' | ')
def z_scoring(self, threshold: float = 1.0):
'''
Create a DataFrame with the Z-Average (d.nm) [Average], PDI [Average] and PDI Width [Average]. Z score is
used to determine whether the DLS iterration scan values are within the threshold. If not, they are removed
and the mean is once again determined. A mean vs std is utilised when determining whether to use the Z score.
A Standard Deviation should not be larger than the Mean. Please note that the filtered out block of code is
the original code that does not take into account the Z score. If deemed better for results, then utilise/
PdI Width may be useless and there is argument to also bring in the volume and count values
:return:
'''
columns = [col for col in self.dls_data.columns if
'Z-Average' in col or 'Sample Name' in col or 'PdI' in col or 'PdI Width' in col]
dlsdata_average = pd.DataFrame(columns=columns)
z_score_filter_df = pd.DataFrame(columns=['Sample Name', 'Z-Average', 'PdI', 'PdI_Width'])
for index in self.list_dls_unique_scans:
temp_df = self.dls_data[self.dls_data['Sample Name'] == (index)]
temp_df = temp_df[['Z-Average (d.nm)', 'PdI', 'PdI Width (d.nm)']]
# create variable for checking
location_s = None
location_pdi = None
location_pdi_width = None
# Z-Average
temp_df_mean = temp_df['Z-Average (d.nm)'].mean()
temp_df_std = temp_df['Z-Average (d.nm)'].std()
if (temp_df_mean < temp_df_std) == True:
z_s = np.abs(zscore(temp_df['Z-Average (d.nm)']))
location_s = np.where(z_s > threshold)
for i in range(len(location_s[0])):
print("Dropping size: ", len(location_s[0]), str(index))
temp_df_s = temp_df.reset_index(drop=True).drop([location_s[0][i]])
temp_df_mean = temp_df_s['Z-Average (d.nm)'].mean()
if location_s is not None:
z_ave_cnt = len(location_s[0])
else:
z_ave_cnt = 0
# PdI
temp_df_mean_p = temp_df['PdI'].mean()
temp_df_std_p = temp_df['PdI'].std()
if (temp_df_mean_p < temp_df_std_p) == True:
z_pdi = np.abs(zscore(temp_df['PdI']))
location_pdi = np.where(z_pdi > threshold)
for i in range(len(location_pdi[0])):
print("Dropping PdI: ", len(location_pdi[0]), str(index))
temp_df_s = temp_df.reset_index(drop=True).drop([location_pdi[0][i]])
temp_df_mean_p = temp_df_s['PdI'].mean()
if location_pdi is not None:
pdi_ave_cnt = len(location_pdi[0])
else:
pdi_ave_cnt = 0
# PdI Width
temp_df_mean_pw = temp_df['PdI Width (d.nm)'].mean()
temp_df_std_pw = temp_df['PdI Width (d.nm)'].std()
if (temp_df_mean_pw < temp_df_std_pw) == True:
z_pdi_width = np.abs(zscore(temp_df['PdI Width (d.nm)']))
location_pdi_width = np.where(z_pdi_width > threshold)
for i in range(len(location_pdi_width[0])):
print("Dropping PdI Width: ", len(location_pdi_width[0]), str(index))
temp_df_s = temp_df.reset_index(drop=True).drop([location_pdi_width[0][i]])
temp_df_mean_pw = temp_df_s['PdI Width (d.nm)'].mean()
if location_pdi_width is not None:
pdiw_ave_cnt = len(location_pdi_width[0])
else:
pdiw_ave_cnt = 0
z_score_filter_df = z_score_filter_df.append({'Sample Name': str(index),
'Z-Average': int(z_ave_cnt),
'PdI': int(pdi_ave_cnt),
'PdI_Width': int(pdiw_ave_cnt)}, ignore_index=True)
dlsdata_average = dlsdata_average.append({'Sample Name': str(index),
'Z-Average (d.nm)': float(temp_df_mean),
'PdI': float(temp_df_mean_p),
'PdI Width (d.nm)': float(temp_df_mean_pw)}, ignore_index=True)
print(z_score_filter_df)
self.dlsdata_average = dlsdata_average
def merge_form_results_dls(self):
# Need to remove bad joins where the GUID is empty and the sample Name,
# essentially the field was not appropriate enough for comple join
# Creating this list will then be used to join on another column
# TODO To be reworked because the list remove logic is wrong
results_comp_df = pd.merge(self.formulation_results, self.dlsdata_average,
how="outer",
left_on="experiment_comb",
right_on="Sample Name").reset_index(drop=True)
list_remove = []
for index, values in results_comp_df.iterrows():
if pd.isna(values['GUID']) == True and pd.isna(values['Sample Name']) == True:
list_remove.append(values['Sample Name'])
print("List of items to be removed")
print(list_remove)
merge_dlsdata = self.dlsdata_average[~self.dlsdata_average['Sample Name'].isin(list_remove)]
results_comp_df = pd.merge(results_comp_df, merge_dlsdata,
how="outer",
left_on="Experiment",
right_on="Sample Name").reset_index(drop=True)
'''Since duplicate columns were created during the two merges, they need to be combined. A where statement is
used to determine if the original row is null, and the duplicate row is, then the duplicate row value is
copied into the original row. '''
results_comp_df['Sample Name'] = results_comp_df['Sample Name_x'].where(
results_comp_df['Sample Name_x'].notnull(), results_comp_df['Sample Name_y'])
results_comp_df['Z-Average (d.nm)'] = results_comp_df['Z-Average (d.nm)_x'].where(
results_comp_df['Z-Average (d.nm)_x'].notnull(), results_comp_df['Z-Average (d.nm)_y'])
results_comp_df['PdI'] = results_comp_df['PdI_x'].where(results_comp_df['PdI_x'].notnull(),
results_comp_df['PdI_y'])
results_comp_df['PdI Width (d.nm)'] = results_comp_df['PdI Width (d.nm)_x'].where(
results_comp_df['PdI Width (d.nm)_x'].notnull(), results_comp_df['PdI Width (d.nm)_y'])
# Columns that are now redundant are removed
clms_drop = ['Sample Name_x', 'Sample Name_y',
'Z-Average (d.nm)_x', 'Z-Average (d.nm)_y',
'PdI_x', 'PdI_y',
'PdI Width (d.nm)_x', 'PdI Width (d.nm)_y']
results_comp_df.drop(columns=clms_drop, inplace=True)
print('Displaying columns to ensure that duplicate columns have been removed')
print(results_comp_df.columns)
self.master_formulation_results_df = results_comp_df
def print_master_formulation_results_info(self):
print(self.master_formulation_results_df.info())
def data_size_aggregation_check(self):
list_missing_size = []
for index, values in self.master_formulation_results_df.iterrows():
if pd.isna(values['GUID']) == False and pd.isna(values['Z-Average (d.nm)']):
list_missing_size.append(values['GUID'])
list_missing_size = list(set(list_missing_size))
print(list_missing_size)
print("Number GUIDs that do not have Particle Average Size:", len(list_missing_size))
self.missing_sizes_guid = pd.DataFrame(list_missing_size)
self.extract = self.master_formulation_results_df[self.master_formulation_results_df['GUID'].isin(list_missing_size)]
list_missing_aggregation = []
for index, values in self.master_formulation_results_df.iterrows():
if pd.isna(values['GUID']) == False and pd.isna(values['ES_Aggregation']) == True:
list_missing_aggregation.append(values['GUID'])
list_missing_aggregation = list(set(list_missing_aggregation))
print(list_missing_aggregation)
print("Number GUIDs that do not have an Aggregation Check:", len(list_missing_aggregation))
# How many formulations were there attempted (incl. missing sizes/aggregation)
list_completed_formulations = list(self.master_formulation_results_df['GUID'].unique())
print(list_completed_formulations)
print("Count of completed formulations (incl. missing sizes/aggregation): ", len(list_completed_formulations))
def cleaning_master_df_(self):
'''
Complete general cleaning and then split the files.
General:
Need to ensure that the Component Rows that are written as 0 are changed to None
Remove columns that are not required, such as GUID, Conc. Ranges, Comments, Sample Names, Links, Dates etc.
Remove columns that are not unique (Will be added to a list)
:return:
'''
self.master_formulation_results_df['Component_2'] = self.master_formulation_results_df['Component_2'].apply(
lambda x: str('None') if x == 0 else x)
self.master_formulation_results_df['Component_3'] = self.master_formulation_results_df['Component_3'].apply(
lambda x: str('None') if x == 0 else x)
self.master_formulation_results_df = self.master_formulation_results_df[
self.master_formulation_results_df['GUID'].notna()].reset_index(drop=True)
print('Any NaN in GUID column: ', self.master_formulation_results_df.isna().any())
self.master_formulation_results_df = self.master_formulation_results_df.dropna(axis=0,
subset=['Z-Average (d.nm)',
'ES_Aggregation'],
thresh=1).reset_index(drop=True)
print('Unique phospholipids: ', self.master_formulation_results_df['Component_1'].unique())
clms_drop = ['Date', 'GUID', 'Range_Concetration_2',
'Range_Concentration_3',
'Link', 'Experiment', 'Sample', 'Comments', 'experiment_comb',
'Sample Name']
self.master_formulation_results_df.drop(columns=clms_drop, inplace=True)
print('Columns: ', self.master_formulation_results_df.columns)
self.master_formulation_results_df['Component_2'].replace('Vitamin D', 'Vitamin D3', inplace=True)
self.master_formulation_results_df['Component_3'].replace('Vitamin D', 'Vitamin D3', inplace=True)
self.master_formulation_results_df['Component_4'].replace('PEG-2000', 'PEG2000 DSPE', inplace=True)
def pubchem_data(self):
component_pubchem_df = pd.DataFrame(
columns=['compound', 'cid', 'mw', 'h_bond_donor_count','h_bond_acceptor_count', 'xlogp', 'complexity', 'heavy_atom_count', 'tpsa', 'ssr', 'single_bond',
'double_bond', 'aromatic_bond'])
self.master_components = self.master_formulation_results_df[['Component_1', 'Component_2', 'Component_3', 'Component_4']]
components = pd.Series(self.master_components.values.ravel('F')).unique()
for item in components:
if item == 'None':
continue
else:
print(item)
results_x = pcp.get_compounds(item, 'name')
# Get smallest set of smallest ring
print(results_x)
compound = pcp.Compound.from_cid(results_x[0].cid)
m = Chem.MolFromSmiles(compound.isomeric_smiles)
ssr = Chem.GetSymmSSSR(m)
print(len(ssr))
# Get Count of bond types
single_bond = 0
double_bond = 0
aromatic_bond = 0
for b in m.GetBonds():
# print(b.GetBondType(), b.GetBondTypeAsDouble(),b.GetIsAromatic() )
if b.GetBondType() == 1.0: # Appears 1.0 is equivalent to single bond
single_bond = 1 + single_bond
if b.GetBondType() == 2.0: # Appears 2.0 is equivalent to double bond
double_bond = 1 + double_bond
if b.GetIsAromatic() == True:
aromatic_bond = 1 + aromatic_bond
# append to dataframe
component_pubchem_df = component_pubchem_df.append({'compound': str(item),
'cid': int(results_x[0].cid),
'mw': float(results_x[0].molecular_weight),
'h_bond_donor_count': int(results_x[0].h_bond_donor_count),
'h_bond_acceptor_count': int(results_x[0].h_bond_acceptor_count),
'xlogp': float(results_x[0].xlogp) if results_x[0].xlogp != None else 0,
'complexity': int(results_x[0].complexity),
'heavy_atom_count': int(
results_x[0].heavy_atom_count),
'tpsa': int(results_x[0].tpsa),
'ssr': int(len(ssr)),
'single_bond': int(single_bond),
'double_bond': int(double_bond),
'aromatic_bond': int(aromatic_bond)},
ignore_index=True)
component_pubchem_df = component_pubchem_df.append({'compound': "None",
'cid': int(0),
'mw': float(0),
'h_bond_donor_count': int(0),
'h_bond_acceptor_count': int(0),
'xlogp': float(0),
'complexity': int(0),
'heavy_atom_count': int(
0),
'tpsa': int(0),
'ssr': int(0),
'single_bond': int(0),
'double_bond': int(0),
'aromatic_bond': int(0)},
ignore_index=True)
print(component_pubchem_df)
self.component_pubchem_df = component_pubchem_df
def merge_master_pubchem(self):
results_comp_df_x = pd.merge(self.master_formulation_results_df, self.component_pubchem_df,
how="inner",
left_on="Component_1",
right_on="compound",
suffixes=["_cp_1"]).reset_index(drop=True)
results_comp_df_x_y = pd.merge(results_comp_df_x, self.component_pubchem_df,
how="inner",
left_on="Component_2",
right_on="compound",
suffixes=["_cp_1", "_cp_2"]).reset_index(drop=True)
temp_cp3 = self.component_pubchem_df.copy()
temp_cp3.columns += "_cp_3"
results_comp_df_x_y_z = pd.merge(results_comp_df_x_y, temp_cp3,
how="inner",
left_on="Component_3",
right_on="compound_cp_3",
suffixes=["_cp_1", "_cp_2","_cp_3"]).reset_index(drop=True)
temp_cp4 = self.component_pubchem_df.copy()
temp_cp4.columns += "_cp_4"
results_comp_df_x_y_z_w = pd.merge(results_comp_df_x_y_z, temp_cp4,
how="inner",
left_on="Component_4",
right_on="compound_cp_4",
).reset_index(drop=True)
results_comp_df_x_y_z_w.drop(columns=['compound_cp_1', 'compound_cp_2', 'cid_cp_1', 'cid_cp_2',
'compound_cp_3', 'compound_cp_4', 'cid_cp_3', 'cid_cp_4'
# 'mw_cp_1',
# 'mw_cp_2',
# 'complexity_cp_2',
# 'aromatic_bond_cp_2',
# 'double_bond_cp_2',
# 'single_bond_cp_2',
# 'ssr_cp_2',
# 'tpsa_cp_2',
# 'heavy_atom_count_cp_2',
# 'xlogp_cp_2',
],
inplace=True)
#results_comp_df_x_y.rename(mapper={'mw_cp_1': 'mw_cp',
# 'complexity_cp_1':'complexity',
# 'aromatic_bond_cp_1': 'aromatic_bond',
# 'double_bond_cp_1': 'double_bond',
# 'single_bond_cp_1': 'single_bond',
# 'ssr_cp_1':'ssr',
# 'tpsa_cp_1':'tpsa',
# 'heavy_atom_count_cp_1':'heavy_atom_count',
# 'xlogp_cp_1':'xlogp'},
# axis = 'columns',
# inplace=True)
self.master_formulation_results_df = results_comp_df_x_y_z_w
def _component_drop(self):
self.master_formulation_results_df.drop(columns=['Component_1', 'Component_2', 'Component_3',
'Component_4'], inplace=True)
return self.master_formulation_results_df
def cols_not_unique_check(self):
col_not_unique = []
for col in self.master_formulation_results_df.columns:
if len(self.master_formulation_results_df[col].unique()) == 1:
col_not_unique.append(str(col))
self.master_formulation_results_df.drop(col, inplace=True, axis = 1)
def column_categ_check_object_type(self):
list_columns = list(self.master_formulation_results_df.columns)
for i in range(len(list_columns)):
if self.master_formulation_results_df[list_columns[i]].dtypes == 'O':
print(list_columns[i])
print(self.master_formulation_results_df[list_columns[i]].value_counts())
def output_files(self):
if os.name == 'posix':
os.chdir(data_output_path_1)
print("Utilising MacBook")
else:
try:
os.chdir(data_output_path_2)
print("Utilising Home Pathway")
except OSError:
os.chdir(wrk_path_1)
print("Utilising Lab Pathway")
self.master_formulation_results_df.to_csv("Results_Complete.csv", index=False)
self.formulation_sheet[self.formulation_sheet['GUID'].isin(self.list_missing_aggregation)].to_csv(
"Rerun_Experiments.csv", index=False)
self.dls_data.to_csv('dls_data_check.csv')
self.missing_sizes_guid.to_csv('missing_sizes_guid.csv')
self.extract.to_csv('missing_sizes_dates.csv')
self.component_pubchem_df.to_csv('pubchem_data.csv', index=False)
master_file_path = r"LiposomeMasterFile_Fixed.xlsm"
results_file_path = r"Results.xlsx"
dataoutput = DataBuild()
dataoutput.read_in_data_sheets()
dataoutput.read_formulation_sheet()
dataoutput.merge_sheets_and_data_check()
dataoutput.read_results_file()
dataoutput.merge_formu_results()
dataoutput.missing_aggregation_check()
dataoutput.extract_dls_data()
dataoutput.clean_dls_data()
dataoutput.z_scoring(threshold=1.0)
dataoutput.merge_form_results_dls()
dataoutput.print_master_formulation_results_info()
dataoutput.data_size_aggregation_check()
dataoutput.cleaning_master_df_()
dataoutput.pubchem_data()
dataoutput.merge_master_pubchem()
dataoutput._component_drop()
dataoutput.cols_not_unique_check()
dataoutput.column_categ_check_object_type()
dataoutput.output_files()