-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_synthetic.py
394 lines (325 loc) · 19.1 KB
/
train_synthetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, point_constraint
from torchvision.utils import save_image
from gaussian_renderer import render
import sys
from lpipsPyTorch import lpips
from scene import Scene, GaussianModel
from utils.general_utils import safe_state, gen_log
import uuid
from tqdm import tqdm
from utils.image_utils import psnr, time2file_name, min_max_norm
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
import datetime
from pdb import set_trace as stx
import yaml
import time
import imageio
tonemap = lambda x : torch.log(x * 5000 + 1 ) / torch.log(torch.tensor(5000.0 + 1.0))
# train_exps = [0.125, 2.0, 32.0]
# test_exps = [0.5, 8.0]
# 训练函数,输入的第一个参数就包含 dataset
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
exp_logger, log_path = prepare_output_and_logger(dataset)
exp_logger.info("Training parameters: {}".format(vars(opt)))
exp_logger.info("Pipeline parameters: {}".format(vars(pipe)))
# 实例化模型并加载数据
# config 的参数要传入 dataset 中
gaussians = GaussianModel(dataset.sh_degree)
#scene = Scene(dataset, gaussians, exp_logger) # 此处读数据,存在 scene 里面
scene = Scene(dataset, gaussians, exp_logger, load_path = args.load_path)
train_exps = dataset.train_exps
test_exps = dataset.test_exps
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
if args.test_only:
#breakpoint()
with torch.no_grad():
exp_logger.info("\n[TESTING ONLY]")
video_inference(0, scene, render, (pipe, background))
testing_report(exp_logger, [0], scene, render, (pipe, background), log_path, train_exps, test_exps)
exit()
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera,随机取一个 viewpoint_cam
# 数据部分实际上由 scene.getTrainCameras() 函数得到
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
# 此处将数据经过模型,bg参数应该要被去掉,所以真正输入数据的应该是 viewpoint_cam ?
# 先看一下 viewpoint_cam 包含哪些信息
# stx()
# viewpoint_cam 是一个类 scene.cameras.Camera
# 还要在render里面仔细看这个 Camera 的哪些属性被使用到了,后续好打包
# view camera 一整个丢进去
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, iteration = iteration, render_mode = 'ldr')
render_pkg_hdr = render(viewpoint_cam, gaussians, pipe, bg, iteration = iteration, render_mode = 'hdr')
# stx()
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
image_hdr = render_pkg_hdr["render"]
image_hdr = torch.clamp(image_hdr / torch.max(image_hdr), 0.0, 1.0)
image_hdr = tonemap(image_hdr)
# Loss
gt_image = viewpoint_cam.original_image.cuda()
gt_image_hdr = viewpoint_cam.hdr_image.cuda()
# if iteration == 0 or iteration > 29800:
# align_debug_path = os.path.join(log_path, 'train_set_vis')
# os.makedirs(align_debug_path,exist_ok=True)
# save_image(min_max_norm(gt_image), os.path.join(align_debug_path,f'gt_{viewpoint_cam.image_name}.png'))
# save_image(min_max_norm(image), os.path.join(align_debug_path,f'render_{viewpoint_cam.image_name}.png'))
# stx()
Ll1 = l1_loss(image, gt_image)
# if iteration == 600:
# stx()
# exps_loss = point_constraint(gaussians, args.fixed_value, iteration)
exps_loss = 0
# loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image)) + args.exps_loss_weight * exps_loss
Ll1_hdr = l1_loss(image_hdr, gt_image_hdr)
loss_ldr = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss_hdr = (1.0 - opt.lambda_dssim) * Ll1_hdr + opt.lambda_dssim * (1.0 - ssim(image_hdr, gt_image_hdr))
loss = loss_ldr + 0.6*loss_hdr
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
if (iteration in testing_iterations):
video_inference(iteration, scene, render, (pipe, background))
training_report(exp_logger, iteration, Ll1, Ll1_hdr, loss, exps_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background), log_path, train_exps, test_exps)
if (iteration in saving_iterations):
exp_logger.info("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
exp_logger.info("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
if not args.model_path:
# if os.getenv('OAR_JOB_ID'):
# unique_str=os.getenv('OAR_JOB_ID')
# else:
# unique_str = str(uuid.uuid4())
# args.model_path = os.path.join("./output/", unique_str[0:10])
date_time = str(datetime.datetime.now())
date_time = time2file_name(date_time)
args.model_path = os.path.join("./output/", args.method, args.scene, date_time)
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Logger
exp_logger = gen_log(args.model_path)
log_path = args.model_path
return exp_logger, log_path
def testing_report(exp_logger, iteration, scene : Scene, renderFunc, renderArgs, log_path, train_exps, test_exps):
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},)
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
# ldr-oe, t1, t3, t5
num_oe = 0
psnr_test_oe = 0.0
ssim_test_oe = 0.0
lpips_test_oe = 0.0
# ldr-ne, t2, t4
num_ne = 0
psnr_test_ne = 0.0
ssim_test_ne = 0.0
lpips_test_ne = 0.0
# hdr
psnr_test_hdr = 0.0
ssim_test_hdr = 0.0
lpips_test_hdr = 0.0
# 记录测试的时间
time_cost = 0.0
for idx, viewpoint in tqdm(enumerate(config['cameras'])):
time_start = time.time()
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, render_mode = 'ldr', iteration = iteration)["render"], 0.0, 1.0)
time_end = time.time()
time_cost += time_end - time_start
# image_hdr = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, render_mode = 'hdr', iteration = iteration)["render"], 0.0, 1.0)
image_hdr_raw = renderFunc(viewpoint, scene.gaussians, *renderArgs, render_mode = 'hdr', iteration = iteration)["render"]
image_hdr = torch.clamp(image_hdr_raw / torch.max(image_hdr_raw), 0.0, 1.0)
image_hdr = tonemap(image_hdr)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
gt_image_hdr = torch.clamp(viewpoint.hdr_image.to("cuda"), 0.0, 1.0)
# max_value_gt = gt_image_hdr.max()
# min_value_gt = gt_image_hdr.min()
# image_hdr = min_max_norm(image_hdr) * (max_value_gt - min_value_gt) + min_value_gt
# mean_gt = gt_image_hdr.mean()
# mean_hdr = image_hdr.mean()
# image_hdr = image_hdr * mean_gt / mean_hdr
psnr_cur = psnr(image, gt_image).mean().double()
ssim_cur = ssim(image, gt_image).mean().double()
lpips_cur = lpips(image, gt_image, net_type='alex').mean().double()
if viewpoint.exps in train_exps:
psnr_test_oe += psnr_cur
ssim_test_oe += ssim_cur
lpips_test_oe += lpips_cur
num_oe += 1
elif viewpoint.exps in test_exps:
psnr_test_ne += psnr_cur
ssim_test_ne += ssim_cur
lpips_test_ne += lpips_cur
num_ne += 1
else:
raise ValueError("Unknown exposure")
psnr_test_hdr += psnr(image_hdr, gt_image_hdr).mean().double()
ssim_test_hdr += ssim(image_hdr, gt_image_hdr).mean().double()
lpips_test_hdr += lpips(image_hdr, gt_image_hdr, net_type='alex').mean().double()
align_debug_path = os.path.join(log_path, 'test_set_vis', str(iteration))
align_debug_path_ldr_oe = os.path.join(align_debug_path, 'ldr', 'oe')
align_debug_path_ldr_ne = os.path.join(align_debug_path, 'ldr', 'ne')
align_debug_path_hdr = os.path.join(align_debug_path, 'hdr')
os.makedirs(align_debug_path,exist_ok=True)
os.makedirs(align_debug_path_ldr_oe,exist_ok=True)
os.makedirs(align_debug_path_ldr_ne,exist_ok=True)
os.makedirs(align_debug_path_hdr,exist_ok=True)
# stx()
# iio.imwrite(os.path.join(align_debug_path,'gt_{}.png'.format(viewpoint_cam.image_name)), (cast_to_image(gt_image[0])*255).astype(np.uint8))
# iio.imwrite(os.path.join(align_debug_path,'render_{}.png'.format(viewpoint_cam.image_name)), (cast_to_image(image[0])*255).astype(np.uint8))
if viewpoint.exps in train_exps:
save_image(min_max_norm(gt_image), os.path.join(align_debug_path_ldr_oe, 'gt_{}_ldr.png'.format(viewpoint.image_name)))
save_image(min_max_norm(image), os.path.join(align_debug_path_ldr_oe, 'render_{}_ldr.png'.format(viewpoint.image_name)))
if viewpoint.exps in test_exps:
save_image(min_max_norm(gt_image), os.path.join(align_debug_path_ldr_ne, 'gt_{}_ldr.png'.format(viewpoint.image_name)))
save_image(min_max_norm(image), os.path.join(align_debug_path_ldr_ne, 'render_{}_ldr.png'.format(viewpoint.image_name)))
save_image(min_max_norm(image_hdr), os.path.join(align_debug_path_hdr, 'render_{}_hdr.png'.format(viewpoint.image_name)))
# 把 image_hdr 存成 .exr 文件
# stx()
imageio.imwrite(os.path.join(align_debug_path_hdr, 'render_{}_hdr.exr'.format(viewpoint.image_name)), image_hdr_raw.permute(1, 2, 0).cpu().numpy())
save_image(min_max_norm(gt_image_hdr), os.path.join(align_debug_path_hdr, 'gt_{}_hdr.png'.format(viewpoint.image_name)))
psnr_test_oe /= num_oe
ssim_test_oe /= num_oe
lpips_test_oe /= num_oe
psnr_test_ne /= num_ne
ssim_test_ne /= num_ne
lpips_test_ne /= num_ne
psnr_test_hdr /= len(config['cameras'])
ssim_test_hdr /= len(config['cameras'])
lpips_test_hdr /= len(config['cameras'])
exp_logger.info("[ITER {}] LDR-OE Evaluating: Number {}, PSNR {}, SSIM {}, LPIPS {}".format(iteration, num_oe, psnr_test_oe, ssim_test_oe, lpips_test_oe))
exp_logger.info("[ITER {}] LDR-NE Evaluating: Number {}, PSNR {}, SSIM {}, LPIPS {}".format(iteration, num_ne, psnr_test_ne, ssim_test_ne, lpips_test_ne))
exp_logger.info("[ITER {}] HDR Evaluating {}: PSNR {}, SSIM {}, LPIPS {}".format(iteration, config['name'], psnr_test_hdr, ssim_test_hdr, lpips_test_hdr))
exp_logger.info("[ITER {}] Time cost: {} s, Test speed: {} fps".format(iteration, time_cost, len(config['cameras']) / time_cost))
def training_report(exp_logger, iteration, Ll1, Ll1_hdr, loss, exps_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, log_path, train_exps, test_exps):
if exp_logger and (iteration == 0 or (iteration) % 100 == 0):
# exp_logger.info(f"Iter:{iteration}, L1 loss={Ll1.item():.4g}, Exps loss={exps_loss.item():.4g}, Total loss={loss.item():.4g}, Time:{int(elapsed)}")
# exp_logger.info(f"Iter:{iteration}, L1 loss={Ll1.item():.4g}, Exps loss={exps_loss}, Total loss={loss.item():.4g}, Time:{int(elapsed)}")
exp_logger.info(f"Iter:{iteration}, LDR L1 loss={Ll1.item():.4g}, HDR L1 loss={Ll1_hdr.item():.4g}, Total loss={loss.item():.4g}, Time:{int(elapsed)}")
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
testing_report(exp_logger, iteration, scene, renderFunc, renderArgs, log_path, train_exps, test_exps)
torch.cuda.empty_cache()
def video_inference(iteration, scene : Scene, renderFunc, renderArgs):
save_folder = os.path.join(scene.model_path,"videos/{}_iteration".format(iteration))
if not os.path.exists(save_folder):
os.makedirs(save_folder) # makedirs
print('videos is in :', save_folder)
torch.cuda.empty_cache()
config = ({'name': 'test', 'cameras' : scene.getSpiralCameras()})
if config['cameras'] and len(config['cameras']) > 0:
img_frames = []
print("Generating Video using", len(config['cameras']), "different view points")
for idx, viewpoint in enumerate(config['cameras']):
render_out = renderFunc(viewpoint, scene.gaussians, iteration = iteration, *renderArgs)
rgb = render_out["render"]
image = torch.clamp(rgb, 0.0, 1.0)
image = image.detach().cpu().permute(1,2,0).numpy()
image = (image * 255).round().astype('uint8')
img_frames.append(image)
# Img to Numpy
imageio.mimwrite(os.path.join(save_folder, "video_rgb_{}.mp4".format(iteration)), img_frames, fps=30, quality=8)
print("\n[ITER {}] Video Save Done!".format(iteration))
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument('--config', type=str, default='config/lego.yaml', help='Path to the configuration file')
parser.add_argument("--load_path", type=str, default="", help="link to the pretrained model file")
parser.add_argument("--test_only", action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[1, 1000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[1, 1000, 30_000])
# parser.add_argument("--test_iterations", nargs="+", type=int, default=[30_000, 40_000])
# parser.add_argument("--save_iterations", nargs="+", type=int, default=[50_000, 60_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--gpu_id", default="7", help="gpu to use")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
torch.autograd.set_detect_anomaly(args.detect_anomaly)
# 读取配置文件
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
# 使用配置文件中的参数来设置OptimizationParams对象的属性
for key, value in config.items():
setattr(args, key, value)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")