forked from kelvins/algorithms-and-data-structures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dijkstra.java
101 lines (85 loc) · 3.24 KB
/
Dijkstra.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
// Dijkstra's Algorithm
// Anderson Carneiro da Silva
// https://github.com/AndersonSheep
// Based on the GeekforGeeks method
// A Java program for Dijkstra's single-source shortest path algorithm.
// The program is for the representation of the graph's adjacency matrix.
import java.io.*;
import java.util.*;
class ShortestPath {
// A utility function to find the vertex with the minimum distance value,
// from the set of vertices not yet included in the shortest path tree
static final int V = 9;
int minDistance(int dist[], Boolean sptSet[]) {
// Initialize a minimum value
int min = Integer.MAX_VALUE, min_index = -1;
for (int v = 0; v < V; v++) {
if (sptSet[v] == false && dist[v] <= min) {
min = dist[v];
min_index = v;
}
}
return min_index;
}
// A utility function to print the constructed distance matrix
void printSolution(int dist[]) {
System.out.println("Vertex \t\t Distance from Source");
for (int i = 0; i < V; i++) {
System.out.println(i + " \t\t " + dist[i]);
}
}
// Function that implements Dijkstra's single-source shortest path algorithm
// for a graph represented using an adjacency matrix
void dijkstra(int graph[][], int src) {
// The output array. dist[i] will hold the shortest distance from src to i
int dist[] = new int[V];
// sptSet[i] will be true if vertex i is included in the shortest
// path tree or the shortest distance from src to i is finalized
Boolean sptSet[] = new Boolean[V];
// Initialize all distances as INFINITE and sptSet[] as false
for (int i = 0; i < V; i++) {
dist[i] = Integer.MAX_VALUE;
sptSet[i] = false;
}
// The distance of the source vertex is always 0
dist[src] = 0;
// Find the shortest path for all vertices
for (int count = 0; count < V - 1; count++) {
// Pick the vertex with the minimum distance from the set of vertices
// not yet processed. u is always equal to src in the first iteration.
int u = minDistance(dist, sptSet);
// Mark the chosen vertex as processed
sptSet[u] = true;
// Update the value of dist for the adjacent vertices of the chosen vertex
for (int v = 0; v < V; v++)
// Update dist[v] only if it's not in sptSet, there is an edge from u to v,
// and the total weight of the path from src to v through u is less than the
// current value of dist[v]
if (!sptSet[v]
&& graph[u][v] != 0
&& dist[u] != Integer.MAX_VALUE
&& dist[u] + graph[u][v] < dist[v]) {
dist[v] = dist[u] + graph[u][v];
}
}
// Print the constructed distance matrix
printSolution(dist);
}
public static void main(String[] args) {
// Let's create the example graph discussed above
int graph[][] =
new int[][] {
{0, 4, 0, 0, 0, 0, 0, 8, 0},
{4, 0, 8, 0, 0, 0, 0, 11, 0},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, 0, 0, 9, 0, 10, 0, 0, 0},
{0, 0, 4, 14, 10, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 2, 0, 1, 6},
{8, 11, 0, 0, 0, 0, 1, 0, 7},
{0, 0, 2, 0, 0, 0, 6, 7, 0}
};
ShortestPath t = new ShortestPath();
t.dijkstra(graph, 0);
}
}