forked from kelvins/algorithms-and-data-structures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinarySearchTree.cpp
246 lines (220 loc) · 7.21 KB
/
BinarySearchTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include <iostream>
/*
* Structure for a binary tree node
*/
struct Node {
int data; ///< The integer data value stored in the node.
Node *left; ///< Pointer to the left child node.
Node *right; ///< Pointer to the right child node.
/**
* Constructor to create a new node with the given data.
*
* @param value the data value for the new node.
*/
Node(int data) : data(data), left(nullptr), right(nullptr) {}
};
class BinarySearchTree {
public:
BinarySearchTree() : root(nullptr) {}
Node *find(int x) const { return _find(this->root, x); }
void insert(int x) { _insert(&(this->root), x); }
void deleteNode(int x) { _delete(&(this->root), x); }
void preorderTraversal() const { _printPreorder(this->root); }
void inorderTraversal() const { _printInorder(this->root); }
void postorderTraversal() const { _printPostorder(this->root); }
private:
Node *root;
/**
* @brief Find a node with a specific value in the binary search tree.
*
* This function searches the binary search tree starting from the given root
* node for a node that contains the specified value `x`. If a node with the
* value `x` is found, a pointer to that node is returned. If no such node
* exists in the tree, the function returns `nullptr`.
*
* @param root A pointer to the root node of the binary search tree.
* @param x The value to search for in the tree.
* @return A pointer to the node containing the value `x`, or `nullptr` if not
* found.
*/
Node *_find(Node *root, int x) const {
if (!root || root->data == x) {
return root;
}
if (x < root->data) {
return _find(root->left, x);
} else {
return _find(root->right, x);
}
}
/**
* @brief Inserts a new node with the specified value into the binary search
* tree.
*
* This function inserts a new node containing the value `x` into the binary
* search tree. It traverses the tree starting from the given root node
* (passed as a pointer to a pointer) and inserts the new node at the
* appropriate position based on the value `x`.
*
* @param root A pointer to a pointer to the root node of the binary search
* tree.
* @param x The value to insert into the tree.
* @return A pointer to the updated root node of the tree after the insertion.
*/
Node *_insert(Node **root, int x) {
if (!(*root)) {
*root = new Node(x);
} else if (x <= (*root)->data) {
(*root)->left = _insert(&((*root)->left), x);
} else {
(*root)->right = _insert(&((*root)->right), x);
}
return *root;
}
/**
* @brief Deletes a node with the specified value from the binary search tree.
*
* This function deletes a node containing the value `x` from the binary
* search tree. It traverses the tree starting from the given root node and
* removes the node with the specified value if it exists.
*
* After the deletion, the function may adjust the tree structure to maintain
* its binary search tree properties.
*
* @param root A pointer to a pointer to the root node of the binary search
* tree.
* @param x The value to delete from the tree.
* @return A pointer to the updated root node of the tree after the deletion.
*/
Node *_delete(Node **root, int x) {
if (!(*root)) {
return nullptr;
}
if (x < (*root)->data) {
(*root)->left = _delete(&((*root)->left), x);
} else if (x > (*root)->data) {
(*root)->right = _delete(&((*root)->right), x);
} else {
// Case 1: Leaf node
if (!((*root)->left) && !((*root)->right)) {
delete *root;
*root = nullptr;
}
// Case 2: Only one child
else if (!((*root)->left)) {
Node *tmp = *root;
*root = (*root)->right;
delete tmp;
} else if (!((*root)->right)) {
Node *tmp = *root;
*root = (*root)->left;
delete tmp;
}
// Case 3: Two children
else {
// Could've been <<< Node *tmp = _find_max((*root)->left); >>>
Node *tmp = _find_min((*root)->right);
(*root)->data = tmp->data;
(*root)->right = _delete(&((*root)->right), tmp->data);
}
}
return *root;
}
/**
* @brief Find the minimum node value in the binary search tree.
*
* This function searches the binary search tree starting from the given root
* node and returns a pointer to the node with the minimum value. The minimum
* value is found by recursively traversing the left child nodes until the
* smallest value is located.
*
* @param root A pointer to the root node of the binary search tree.
* @return A pointer to the node with the minimum value in the tree.
*/
Node *_find_min(Node *root) const {
while (root && root->left) {
root = root->left;
}
return root;
}
/**
* @brief Find the maximum node value in the binary search tree.
*
* This function searches the binary search tree starting from the given root
* node and returns a pointer to the node with the maximum value. The maximum
* value is found by recursively traversing the right child nodes until the
* largest value is located.
*
* @param root A pointer to the root node of the binary search tree.
* @return A pointer to the node with the minimum value in the tree.
*/
Node *_find_max(Node *root) const {
while (root && root->right) {
root = root->right;
}
return root;
}
/**
* @brief Prints the elements of the binary search tree in preorder traversal.
*
* The preorder traversal visits the current node first, followed by its left
* and right children - recursively.
*
* @param root A pointer to the root node of the binary search tree.
*/
void _printPreorder(Node *root) const {
if (root) {
std::cout << root->data << '\n';
_printPreorder(root->left);
_printPreorder(root->right);
}
}
/**
* @brief Prints the elements of the binary search tree in inorder traversal.
*
* The inorder traversal visits the left child, followed by the current node,
* and then the right child recursively.
*
* @param root A pointer to the root node of the binary search tree.
*/
void _printInorder(Node *root) const {
if (root) {
_printInorder(root->left);
std::cout << root->data << '\n';
_printInorder(root->right);
}
}
/**
* @brief Prints the elements of the binary search tree in postorder
* traversal.
*
* The postorder traversal visits the left and right children first, followed
* by the current node.
*
* @param root A pointer to the root node of the binary search tree.
*/
void _printPostorder(Node *root) const {
if (root) {
_printPostorder(root->left);
_printPostorder(root->right);
std::cout << root->data << '\n';
}
}
};
int main(int argc, char *argv[]) {
auto bst = BinarySearchTree();
int arr[] = {30, 20, 10, 50, 40, 45, 80, 90};
for (const auto &e : arr) {
bst.insert(e);
}
std::cout << "inorder traversal:\n";
bst.inorderTraversal();
std::cout << "preorder traversal:\n";
bst.preorderTraversal();
std::cout << "postorder traversal:\n";
bst.postorderTraversal();
bst.deleteNode(50);
std::cout << "preorder traversal:\n";
bst.preorderTraversal();
return 0;
}