-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
173 lines (136 loc) · 5.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import streamlit as st
from dotenv import load_dotenv
# from PyPDF2 import PdfReader
from pdfminer.high_level import extract_pages, extract_text
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub
from htmlTemplates import css, bot_template, user_template
load_dotenv()
# For PyPDF2 usage, pdfminer showed better results with my documents
# def get_pdf_text(pdf_docs):
# """
# Extract text from uploaded PDF documents.
# If there's any error in reading a PDF, an appropriate message will be displayed.
# """
# text = ""
# for pdf in pdf_docs:
# try:
# pdf_reader = PdfReader(pdf)
# for page in pdf_reader.pages:
# extracted_text = page.extract_text()
# if extracted_text: # Check if text extraction was successful
# text += extracted_text
# else: # Sometimes, PyPDF2 may not be able to extract text
# st.warning(
# f"Failed to extract text from one of the pages in {pdf.name}."
# )
# except Exception as e:
# st.error(f"Error reading the PDF {pdf.name}: {str(e)}")
# return text
def get_pdf_text(pdf_docs):
"""
Extract text from uploaded PDF documents.
If there's any error in reading a PDF, an appropriate message will be displayed.
"""
text = ""
for pdf in pdf_docs:
try:
text = extract_text(pdf)
except Exception as e:
st.error(f"Error reading the PDF {pdf.name}: {str(e)}")
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings = OpenAIEmbeddings()
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI()
# llm = ChatOpenAI(model="gpt-4")
# llm = HuggingFaceHub(
# repo_id="google/flan-t5-xxl",
# model_kwargs={"temperature": 0.5, "max_length": 512},
# )
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
)
return conversation_chain
def handle_userinput(user_question):
if st.session_state.conversation is None:
st.write("Please upload and process a PDF before asking a question.")
return
response = st.session_state.conversation({"question": user_question})
st.session_state.chat_history = response["chat_history"]
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(
user_template.replace("{{MSG}}", message.content),
unsafe_allow_html=True,
)
else:
st.write(
bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True
)
def setup():
"""
Set up the streamlit app.
"""
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
# Initialize session state variables
if "conversation" not in st.session_state or st.session_state.conversation is None:
default_text = "This is some default text to start the conversation."
text_chunks = get_text_chunks(default_text)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(vectorstore)
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
def display_chat_ui():
"""
Display the main chat UI with a submit button.
"""
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if st.button("Submit Question") and user_question:
handle_userinput(user_question)
def sidebar_documents_upload():
"""
Handle the document uploads in the sidebar.
"""
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
)
if st.button("Process"):
if not pdf_docs:
st.warning("Please upload PDF documents first.")
return
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
st.success("PDF documents processed successfully!")
def main():
setup()
display_chat_ui()
sidebar_documents_upload()
if __name__ == "__main__":
main()