forked from TBrost/BYUI-Timeseries-Drafts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter_1_lesson_4_handout.qmd
202 lines (175 loc) · 5.55 KB
/
chapter_1_lesson_4_handout.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
title: "Chapter 1 Lesson 4: In-Class Worksheet"
format: html
editor: source
sidebar: false
---
```{r}
#| include: false
source("common_functions.R")
```
```{=html}
<script type="text/javascript">
function showhide(id) {
var e = document.getElementById(id);
e.style.display = (e.style.display == 'block') ? 'none' : 'block';
}
function openTab(evt, tabName) {
var i, tabcontent, tablinks;
tabcontent = document.getElementsByClassName("tabcontent");
for (i = 0; i < tabcontent.length; i++) {
tabcontent[i].style.display = "none";
}
tablinks = document.getElementsByClassName("tablinks");
for (i = 0; i < tablinks.length; i++) {
tablinks[i].className = tablinks[i].className.replace(" active", "");
}
document.getElementById(tabName).style.display = "block";
evt.currentTarget.className += " active";
}
</script>
```
```{r}
#| echo: false
deaths_df <- rio::import("https://byuistats.github.io/timeseries/data/traffic_deaths.xlsx")
# Method 1: Create date from scratch based on pattern of rows
# This only works if the data are in ascending order with no missing values
# Note: This file is not in the right order, so this code gives the wrong tsibble
# unless you sort the Excel file before proceeding.
start_date <- lubridate::ymd("2017-01-01")
date_seq <- seq(start_date,
start_date + months(nrow(deaths_df)-1),
by = "1 months")
deaths_tibble <- tibble(
dates = date_seq,
year = lubridate::year(date_seq),
month = lubridate::month(date_seq),
value = pull(deaths_df, Deaths)
)
# Method 2: Build using the date information in the Excel file
deaths_tibble <- deaths_df |>
mutate(
date_str = paste("1", Month, Year),
dates = dmy(date_str),
year = lubridate::year(dates),
month = lubridate::month(dates),
value = Deaths
) |>
dplyr::select(dates, year, month, value) |>
tibble()
# Create the index variable and convert to a tsibble
deaths_ts <- deaths_tibble |>
mutate(index = tsibble::yearmonth(dates)) |>
as_tsibble(index = index) |>
dplyr::select(index, dates, year, month, value) |>
rename(deaths = value) # rename value to emphasize data context
```
```{r}
#| echo: false
# computes the 12-month centered moving average (m_hat)
deaths_ts <- deaths_ts |>
mutate(
m_hat = (
(1/2) * lag(deaths, 6)
+ lag(deaths, 5)
+ lag(deaths, 4)
+ lag(deaths, 3)
+ lag(deaths, 2)
+ lag(deaths, 1)
+ deaths
+ lead(deaths, 1)
+ lead(deaths, 2)
+ lead(deaths, 3)
+ lead(deaths, 4)
+ lead(deaths, 5)
+ (1/2) * lead(deaths, 6)
) / 12
)
```
#### Table 3: Compute $\hat s_t$; then use Table 2 to find $\bar s_t$. Use $\bar s_t$ to find the random component and the seasonally adjusted time series values.
```{r}
#| echo: false
# Constant defining the number of rows included in the sample tables
num_blank_rows <- 14
deaths_shat_ts <- deaths_ts |>
dplyr::select(index, month, deaths, m_hat) |>
mutate(s_hat = deaths - m_hat)
deaths_shat_ts |>
round_df(1) |>
mutate(
m_hat = as.character(m_hat),
s_hat = as.character(s_hat),
) |>
mutate(
deaths = as.character(deaths),
s_hat = "",
s_bar = "",
random = "",
seasonally_adjusted_x = ""
) |>
head(num_blank_rows) |>
dplyr::select(-month) |>
rename(
Month = index,
"Deaths $$x_t$$" = deaths,
"$$ \\hat m $$" = m_hat,
"$$ \\hat s $$" = s_hat,
"$$ \\bar s $$" = s_bar,
Random = random,
"Seasonally Adjusted $$x_t$$" = seasonally_adjusted_x
) |>
display_table("1in")
```
#### Table 2: Table of $\hat s_t$ values, monthly means of $\hat s_t$, and seasonally adjusted mean $\bar s_t$.
```{r}
#| echo: false
# Compute s_hat
deaths_shat_df <- deaths_ts |>
data.frame() |>
mutate(month = month(dates, label=TRUE)) |>
round_df(1) |> # Round df to make the computations simpler
mutate(s_hat = deaths - m_hat)
wider_df <- deaths_shat_df |>
dplyr::select(year, month, s_hat) |>
pivot_wider(values_from = "s_hat", names_from = "month")
wider_df2 <- wider_df %>%
bind_rows(colMeans(wider_df[ , -c(1)], na.rm = TRUE)) |>
round_df(1) |>
mutate(
Jan = round_as_text(Jan),
Feb = round_as_text(Feb),
Mar = round_as_text(Mar),
Apr = round_as_text(Apr),
May = round_as_text(May),
Jun = round_as_text(Jun),
Jul = round_as_text(Jul),
Aug = round_as_text(Aug),
Sep = round_as_text(Sep),
Oct = round_as_text(Oct),
Nov = round_as_text(Nov),
Dec = round_as_text(Dec)
) |>
mutate(year = ifelse(row_number() == n(), "Mean", year))
wider_df2 |>
# Hide bar_s_t values for November and December
mutate(Jul = ifelse(row_number() == 1, "", Jul)) |>
mutate(Aug = ifelse(row_number() == 1, "", Aug)) |>
mutate(Sep = ifelse(row_number() == 1, "", Sep)) |>
mutate(Oct = ifelse(row_number() == 1, "", Oct)) |>
mutate(Nov = ifelse(row_number() == 1, "", Nov)) |>
mutate(Dec = ifelse(row_number() == 1, "", Dec)) |>
mutate(Jan = ifelse(row_number() == 2, "", Jan)) |>
mutate(Feb = ifelse(row_number() == 2, "", Feb)) |>
mutate(Nov = ifelse(row_number() == n(), "", Nov)) |>
mutate(Dec = ifelse(row_number() == n(), "", Dec)) |>
rename(Year = year) |>
# color_specific_cell(1, 8, "#0072B2") |>
# color_specific_cell(1, 9, "#0072B2") |>
# color_specific_cell(1, 10, "#0072B2") |>
# color_specific_cell(1, 11, "#0072B2") |>
# color_specific_cell(1, 12, "#0072B2") |>
# color_last_row2("#0072B2") |>
rbind(c("$$ \\bar s_t $$",rep("",12))) |>
# color_last_row2("#0072B2") |>
display_table()
```