-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathhead_pose_from_webcam.py
136 lines (106 loc) · 4.62 KB
/
head_pose_from_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
import os
import cv2
import sys
import dlib
import argparse
import numpy as np
#import Face Recognition libraries
import mediapipe as mp
# helper modules
from drawFace import draw
import reference_world as world
#Settingup MediaPipe
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
face_detection = mp_face_detection.FaceDetection(
min_detection_confidence=0.5)
PREDICTOR_PATH = os.path.join("models", "shape_predictor_68_face_landmarks.dat")
if not os.path.isfile(PREDICTOR_PATH):
print("[ERROR] USE models/downloader.sh to download the predictor")
sys.exit()
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--focal",
type=float,
help="Callibrated Focal Length of the camera")
parser.add_argument("-s", "--camsource", type=int, default=0,
help="Enter the camera source")
args = vars(parser.parse_args())
face3Dmodel = world.ref3DModel()
def main():
predictor = dlib.shape_predictor(PREDICTOR_PATH)
cap = cv2.VideoCapture(args["camsource"])
while True:
GAZE = "Face Not Found"
ret, img = cap.read()
image = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
h, w, c = image.shape
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if not ret:
print(f'[ERROR - System]Cannot read from source: {args["camsource"]}')
break
if results.detections:
for detection in results.detections:
location = detection.location_data
relative_bounding_box = location.relative_bounding_box
x_min = relative_bounding_box.xmin
y_min = relative_bounding_box.ymin
widthh = relative_bounding_box.width
heightt = relative_bounding_box.height
absx,absy=mp_drawing._normalized_to_pixel_coordinates(x_min,y_min,w,h)
abswidth,absheight = mp_drawing._normalized_to_pixel_coordinates(x_min+widthh,y_min+heightt,w,h)
newrect = dlib.rectangle(absx,absy,abswidth,absheight)
cv2.rectangle(image, (absx, absy), (abswidth, absheight),
(0, 255, 0), 2)
shape = predictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), newrect)
draw(image, shape)
refImgPts = world.ref2dImagePoints(shape)
height, width, channels = img.shape
focalLength = args["focal"] * width
cameraMatrix = world.cameraMatrix(focalLength, (height / 2, width / 2))
mdists = np.zeros((4, 1), dtype=np.float64)
# calculate rotation and translation vector using solvePnP
success, rotationVector, translationVector = cv2.solvePnP(
face3Dmodel, refImgPts, cameraMatrix, mdists)
noseEndPoints3D = np.array([[0, 0, 1000.0]], dtype=np.float64)
noseEndPoint2D, jacobian = cv2.projectPoints(
noseEndPoints3D, rotationVector, translationVector, cameraMatrix, mdists)
# draw nose line
p1 = (int(refImgPts[0, 0]), int(refImgPts[0, 1]))
p2 = (int(noseEndPoint2D[0, 0, 0]), int(noseEndPoint2D[0, 0, 1]))
cv2.line(image, p1, p2, (110, 220, 0),
thickness=2, lineType=cv2.LINE_AA)
# calculating euler angles
rmat, jac = cv2.Rodrigues(rotationVector)
angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
print('*' * 80)
# print(f"Qx:{Qx}\tQy:{Qy}\tQz:{Qz}\t")
x = np.arctan2(Qx[2][1], Qx[2][2])
y = np.arctan2(-Qy[2][0], np.sqrt((Qy[2][1] * Qy[2][1] ) + (Qy[2][2] * Qy[2][2])))
z = np.arctan2(Qz[0][0], Qz[1][0])
# print("ThetaX: ", x)
print("ThetaY: ", y)
# print("ThetaZ: ", z)
print('*' * 80)
if angles[1] < -15:
GAZE = "Looking: Left"
elif angles[1] > 15:
GAZE = "Looking: Right"
else:
GAZE = "Forward"
cv2.putText(image, GAZE, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 80), 2)
cv2.imshow("Head Pose", image)
key = cv2.waitKey(10) & 0xFF
if key == 27:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
# path to your video file or camera serial
main()