Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error modeltime.h2o issue with modeltime_fit_resamples() #24

Open
Shafi2016 opened this issue Nov 13, 2021 · 0 comments
Open

Error modeltime.h2o issue with modeltime_fit_resamples() #24

Shafi2016 opened this issue Nov 13, 2021 · 0 comments

Comments

@Shafi2016
Copy link

Hello @mdancho84, Here is reproducible codes for the error. I am using modeltime.h2o with modeltime resamples
image

library(Quandl)

Tidymodeling

library(modeltime.ensemble)
library(modeltime)
library(tidymodels)

Base Models

library(glmnet)
library(xgboost)

Core Packages

library(tidyverse)
library(lubridate)
library(timetk)

library(modeltime.h2o)
library(tidymodels)
library(h2o)
h2o.init()
h2o.removeAll()
df1 <- Quandl(code = "FRED/PINCOME",
type = "raw",
collapse = "monthly",
order = "asc",
end_date="2017-12-31")
df2 <- Quandl(code = "FRED/GDP",
type = "raw",
collapse = "monthly",
order = "asc",
end_date="2017-12-31")

per <- df1 %>% rename(PI = Value)%>% select(-Date)
gdp <- df2 %>% rename(GDP = Value)

data <- cbind(gdp,per)
data1 <- tk_augment_differences(
.data = data,
.value = GDP:PI,
.lags = 1,
.differences = 1,
.log = TRUE,
.names = "auto") %>%
select(-GDP,-PI) %>%

rename(GDP = GDP_lag1_diff1,PI = PI_lag1_diff1) %>%
drop_na()

horizon <- 6
lag_period <- 6
rolling_periods <- c(10:12)
data_pre_full <- data1 %>%

Add future window----

#bind_rows(

future_frame(.data = .,.date_var = Date, .length_out = horizon)

#) %>%

add lags----

tk_augment_lags(
.value = GDP : PI ,
.lags = lag_period)

%>%

add lag rolling averages

tk_augment_slidify(
.value = PI_lag6,
.period = rolling_periods,
.f = mean,
.align = "center",
.partial = TRUE)

2.0 STEP 2 - SEPARATE INTO MODELING & FORECAST DATA ----

data_prepared_tbl <- data_pre_full %>%

filter(!is.na(GDP)) %>%
dplyr::select(-PI) %>%
drop_na()

splits <- time_series_split(data_prepared_tbl, assess = 8, cumulative = TRUE)

recipe_spec <- recipe(GDP~ ., data = training(splits)) # %>%

train_tbl <- rsample::training(splits) %>% bake(prep(recipe_spec), .)
test_tbl <- rsample::testing(splits) %>% bake(prep(recipe_spec), .)

MODEL SPEC ----

model_spec <- automl_reg(mode = 'regression') %>%
parsnip::set_engine(
engine = 'h2o',
max_runtime_secs = 99999999999999999,
max_runtime_secs_per_model = 3600,
project_name = 'project_01',
nfolds = 0,
max_models = 2,
#exclude_algos = c("DeepLearning"),
include_algos = c("GLM"),
seed = 786
)

model_fitted <- model_spec %>%

fit(GDP ~ ., data = training(splits))

leaderboard <- automl_leaderboard(model_fitted)
leaderboard

model2 <- leaderboard$model_id[[1]]
model_fit_2 <- automl_update_model(model_fitted, model2)

MODELTIME ----

calibration_tbl <- modeltime_table(
model_fit_2)

resample_spec <- rolling_origin(
data_prepared_tbl,
initial = 100,
assess = 6,
cumulative = TRUE,
skip = 0,
lag = 0,
overlap = 0
)

resamples_fitted <- calibration_tbl %>%
modeltime_fit_resamples(
resamples = resample_spec ,
control = control_resamples(verbose = TRUE))

resamples_fitted %>%
modeltime_resample_accuracy(
metric_set = metric_set(rmse, rsq))

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant