-
Notifications
You must be signed in to change notification settings - Fork 11
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Error in refit_tbl #20
Comments
I just ran the tutorial. I've increased the number of models slightly to improve results. It seems to run OK for me. library(tidymodels)
library(modeltime.h2o)
library(tidyverse)
library(timetk)
data_tbl <- walmart_sales_weekly %>%
select(id, Date, Weekly_Sales)
splits <- time_series_split(data_tbl, assess = "3 month", cumulative = TRUE)
recipe_spec <- recipe(Weekly_Sales ~ ., data = training(splits)) %>%
step_timeseries_signature(Date)
train_tbl <- training(splits) %>% bake(prep(recipe_spec), .)
test_tbl <- testing(splits) %>% bake(prep(recipe_spec), .)
h2o.init(
nthreads = -1,
ip = 'localhost',
port = 54321
)
#> Connection successful!
#>
#> R is connected to the H2O cluster:
#> H2O cluster uptime: 3 minutes 24 seconds
#> H2O cluster timezone: America/New_York
#> H2O data parsing timezone: UTC
#> H2O cluster version: 3.32.0.1
#> H2O cluster version age: 6 months and 18 days !!!
#> H2O cluster name: H2O_started_from_R_mdancho_rvk435
#> H2O cluster total nodes: 1
#> H2O cluster total memory: 7.96 GB
#> H2O cluster total cores: 12
#> H2O cluster allowed cores: 12
#> H2O cluster healthy: TRUE
#> H2O Connection ip: localhost
#> H2O Connection port: 54321
#> H2O Connection proxy: NA
#> H2O Internal Security: FALSE
#> H2O API Extensions: Amazon S3, XGBoost, Algos, AutoML, Core V3, TargetEncoder, Core V4
#> R Version: R version 4.0.2 (2020-06-22)
#> Warning in h2o.clusterInfo():
#> Your H2O cluster version is too old (6 months and 18 days)!
#> Please download and install the latest version from http://h2o.ai/download/
# Optional - Turn off progress indicators during training runs
h2o.no_progress()
model_spec <- automl_reg(mode = 'regression') %>%
set_engine(
engine = 'h2o',
max_runtime_secs = 15,
max_runtime_secs_per_model = 15,
max_models = 10,
nfolds = 5,
exclude_algos = c("DeepLearning"),
verbosity = NULL,
seed = 786
)
model_fitted <- model_spec %>%
fit(Weekly_Sales ~ ., data = train_tbl)
modeltime_tbl <- modeltime_table(
model_fitted
)
modeltime_tbl
#> # Modeltime Table
#> # A tibble: 1 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> H2O AUTOML - STACKEDENSEMBLE
modeltime_tbl %>%
modeltime_calibrate(test_tbl) %>%
modeltime_forecast(
new_data = test_tbl,
actual_data = data_tbl,
keep_data = TRUE
) %>%
group_by(id) %>%
plot_modeltime_forecast(
.facet_ncol = 2,
.interactive = FALSE
) data_prepared_tbl <- bind_rows(train_tbl, test_tbl)
future_tbl <- data_prepared_tbl %>%
group_by(id) %>%
future_frame(.length_out = "1 year") %>%
ungroup()
#> .date_var is missing. Using: Date
future_prepared_tbl <- bake(prep(recipe_spec), future_tbl)
refit_tbl <- modeltime_tbl %>%
modeltime_refit(data_prepared_tbl)
refit_tbl %>%
modeltime_forecast(
new_data = future_prepared_tbl,
actual_data = data_prepared_tbl,
keep_data = TRUE
) %>%
group_by(id) %>%
plot_modeltime_forecast(
.facet_ncol = 2,
.interactive = FALSE
)
#> Converting to H2OFrame...
#> Warning: Expecting the following names to be in the data frame: .conf_hi, .conf_lo.
#> Proceeding with '.conf_interval_show = FALSE' to visualize the forecast without confidence intervals.
#> Alternatively, try using `modeltime_calibrate()` before forecasting to add confidence intervals. Created on 2021-04-27 by the reprex package (v1.0.0) Session Info> devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────
setting value
version R version 4.0.2 (2020-06-22)
os OS X 11.2.3
system x86_64, darwin17.0
ui RStudio
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/New_York
date 2021-04-27
─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────
package * version date lib source
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
backports 1.2.1 2020-12-09 [1] CRAN (R 4.0.2)
bit 4.0.4 2020-08-04 [1] CRAN (R 4.0.2)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.0.2)
bitops 1.0-6 2013-08-17 [1] CRAN (R 4.0.2)
broom * 0.7.5 2021-02-19 [1] CRAN (R 4.0.2)
bslib 0.2.4 2021-01-25 [1] CRAN (R 4.0.2)
cachem 1.0.4 2021-02-13 [1] CRAN (R 4.0.2)
callr 3.5.1 2020-10-13 [1] CRAN (R 4.0.2)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.0.2)
class 7.3-18 2021-01-24 [1] CRAN (R 4.0.2)
cli 2.3.1 2021-02-23 [1] CRAN (R 4.0.2)
clipr 0.7.1 2020-10-08 [1] CRAN (R 4.0.2)
codetools 0.2-18 2020-11-04 [1] CRAN (R 4.0.2)
colorspace 2.0-0 2020-11-11 [1] CRAN (R 4.0.2)
crayon 1.4.1 2021-02-08 [1] CRAN (R 4.0.2)
curl 4.3 2019-12-02 [1] CRAN (R 4.0.1)
data.table 1.14.0 2021-02-21 [1] CRAN (R 4.0.2)
DBI 1.1.1 2021-01-15 [1] CRAN (R 4.0.2)
dbplyr 2.1.0 2021-02-03 [1] CRAN (R 4.0.2)
desc 1.3.0 2021-03-05 [1] CRAN (R 4.0.2)
devtools 2.3.2 2020-09-18 [1] CRAN (R 4.0.2)
dials * 0.0.9.9000 2020-10-13 [1] Github (tidymodels/dials@2b79300)
DiceDesign 1.9 2021-02-13 [1] CRAN (R 4.0.2)
digest 0.6.27 2020-10-24 [1] CRAN (R 4.0.2)
dplyr * 1.0.5 2021-03-05 [1] CRAN (R 4.0.2)
ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.2)
evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.1)
fansi 0.4.2 2021-01-15 [1] CRAN (R 4.0.2)
farver 2.1.0 2021-02-28 [1] CRAN (R 4.0.2)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.2)
forcats * 0.5.1 2021-01-27 [1] CRAN (R 4.0.2)
foreach 1.5.1 2020-10-15 [1] CRAN (R 4.0.2)
fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.2)
furrr 0.2.2 2021-01-29 [1] CRAN (R 4.0.2)
future 1.21.0 2020-12-10 [1] CRAN (R 4.0.2)
generics 0.1.0 2020-10-31 [1] CRAN (R 4.0.2)
ggplot2 * 3.3.3 2020-12-30 [1] CRAN (R 4.0.2)
glmnet * 4.1-1 2021-02-21 [1] CRAN (R 4.0.2)
globals 0.14.0 2020-11-22 [1] CRAN (R 4.0.2)
glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
gower 0.2.2 2020-06-23 [1] CRAN (R 4.0.2)
GPfit 1.0-8 2019-02-08 [1] CRAN (R 4.0.2)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.2)
h2o * 3.32.0.1 2020-10-17 [1] CRAN (R 4.0.2)
hardhat 0.1.5 2020-11-09 [1] CRAN (R 4.0.2)
haven 2.3.1 2020-06-01 [1] CRAN (R 4.0.2)
highr 0.8 2019-03-20 [1] CRAN (R 4.0.2)
hms 1.0.0 2021-01-13 [1] CRAN (R 4.0.2)
htmltools 0.5.1.1 2021-01-22 [1] CRAN (R 4.0.2)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
igraph 1.2.6 2020-10-06 [1] CRAN (R 4.0.2)
infer * 0.5.4 2021-01-13 [1] CRAN (R 4.0.2)
ipred 0.9-11 2021-03-12 [1] CRAN (R 4.0.2)
iterators 1.0.13 2020-10-15 [1] CRAN (R 4.0.2)
job 0.1 2021-04-27 [1] Github (lindeloev/job@f687bf9)
jquerylib 0.1.3 2020-12-17 [1] CRAN (R 4.0.2)
jsonlite 1.7.2 2020-12-09 [1] CRAN (R 4.0.2)
kknn * 1.3.1 2016-03-26 [1] CRAN (R 4.0.2)
knitr 1.31 2021-01-27 [1] CRAN (R 4.0.2)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.0.2)
lattice 0.20-41 2020-04-02 [1] CRAN (R 4.0.2)
lava 1.6.9 2021-03-11 [1] CRAN (R 4.0.2)
lhs 1.1.1 2020-10-05 [1] CRAN (R 4.0.2)
lifecycle 1.0.0 2021-02-15 [1] CRAN (R 4.0.2)
listenv 0.8.0 2019-12-05 [1] CRAN (R 4.0.2)
lubridate * 1.7.10 2021-02-26 [1] CRAN (R 4.0.2)
magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.0.2)
MASS 7.3-53.1 2021-02-12 [1] CRAN (R 4.0.2)
Matrix * 1.3-2 2021-01-06 [1] CRAN (R 4.0.2)
memoise 2.0.0 2021-01-26 [1] CRAN (R 4.0.2)
modeldata * 0.1.0 2020-10-22 [1] CRAN (R 4.0.2)
modelr 0.1.8 2020-05-19 [1] CRAN (R 4.0.2)
modeltime * 0.5.1.9000 2021-04-15 [1] local
modeltime.h2o * 0.1.1.9000 2021-04-05 [1] local
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.2)
nnet 7.3-15 2021-01-24 [1] CRAN (R 4.0.2)
parallelly 1.24.0 2021-03-14 [1] CRAN (R 4.0.2)
parsnip * 0.1.5 2021-01-19 [1] CRAN (R 4.0.2)
pillar 1.5.1 2021-03-05 [1] CRAN (R 4.0.2)
pkgbuild 1.2.0 2020-12-15 [1] CRAN (R 4.0.2)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.2)
pkgload 1.2.0 2021-02-23 [1] CRAN (R 4.0.2)
plyr 1.8.6 2020-03-03 [1] CRAN (R 4.0.2)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
pROC 1.17.0.1 2021-01-13 [1] CRAN (R 4.0.2)
processx 3.4.5 2020-11-30 [1] CRAN (R 4.0.2)
prodlim 2019.11.13 2019-11-17 [1] CRAN (R 4.0.2)
progressr 0.7.0 2020-12-11 [1] CRAN (R 4.0.2)
ps 1.6.0 2021-02-28 [1] CRAN (R 4.0.2)
purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
R6 2.5.0 2020-10-28 [1] CRAN (R 4.0.2)
Rcpp 1.0.6 2021-01-15 [1] CRAN (R 4.0.2)
RcppParallel 5.0.3 2021-02-24 [1] CRAN (R 4.0.2)
RCurl 1.98-1.2 2020-04-18 [1] CRAN (R 4.0.2)
readr * 1.4.0 2020-10-05 [1] CRAN (R 4.0.2)
readxl 1.3.1 2019-03-13 [1] CRAN (R 4.0.2)
recipes * 0.1.15 2020-11-11 [1] CRAN (R 4.0.2)
remotes 2.2.0 2020-07-21 [1] CRAN (R 4.0.2)
reprex 1.0.0 2021-01-27 [1] CRAN (R 4.0.2)
rlang * 0.4.10 2020-12-30 [1] CRAN (R 4.0.2)
rmarkdown 2.7 2021-02-19 [1] CRAN (R 4.0.2)
rpart * 4.1-15 2019-04-12 [1] CRAN (R 4.0.2)
rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.2)
rsample * 0.0.9 2021-02-17 [1] CRAN (R 4.0.2)
rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.2)
rvest 1.0.0 2021-03-09 [1] CRAN (R 4.0.2)
sass 0.3.1 2021-01-24 [1] CRAN (R 4.0.2)
scales * 1.1.1 2020-05-11 [1] CRAN (R 4.0.2)
sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.2)
shape 1.4.5 2020-09-13 [1] CRAN (R 4.0.2)
slider 0.1.5 2020-07-21 [1] CRAN (R 4.0.2)
StanHeaders 2.21.0-7 2020-12-17 [1] CRAN (R 4.0.2)
stringi 1.5.3 2020-09-09 [1] CRAN (R 4.0.2)
stringr * 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
styler 1.3.2 2020-02-23 [1] CRAN (R 4.0.2)
survival 3.2-9 2021-03-14 [1] CRAN (R 4.0.2)
testthat 3.0.2 2021-02-14 [1] CRAN (R 4.0.2)
tibble * 3.1.0 2021-02-25 [1] CRAN (R 4.0.2)
tidymodels * 0.1.2 2020-11-22 [1] CRAN (R 4.0.2)
tidyr * 1.1.3 2021-03-03 [1] CRAN (R 4.0.2)
tidyselect 1.1.0 2020-05-11 [1] CRAN (R 4.0.2)
tidyverse * 1.3.0 2019-11-21 [1] CRAN (R 4.0.2)
timeDate 3043.102 2018-02-21 [1] CRAN (R 4.0.2)
timetk * 2.6.1 2021-02-18 [1] local
tune * 0.1.3 2021-02-28 [1] CRAN (R 4.0.2)
usethis 2.0.1 2021-02-10 [1] CRAN (R 4.0.2)
utf8 1.2.1 2021-03-12 [1] CRAN (R 4.0.2)
vctrs * 0.3.6.9000 2021-02-19 [1] Github (r-lib/vctrs@9af59e9)
warp 0.2.0 2020-10-21 [1] CRAN (R 4.0.2)
withr 2.4.1 2021-01-26 [1] CRAN (R 4.0.2)
workflows * 0.2.2 2021-03-10 [1] CRAN (R 4.0.2)
workflowsets * 0.0.1 2021-03-18 [1] CRAN (R 4.0.2)
xfun 0.22 2021-03-11 [1] CRAN (R 4.0.2)
xml2 1.3.2 2020-04-23 [1] CRAN (R 4.0.2)
xts 0.12.1 2020-09-09 [1] CRAN (R 4.0.2)
yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.2)
yardstick * 0.0.8 2021-03-28 [1] CRAN (R 4.0.2)
zoo 1.8-9 2021-03-09 [1] CRAN (R 4.0.2)
[1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library |
Hello, recently, I know where the problem is... In this example, we must select just 3 columns If we doesn't select 3 columns (so, all columns in Error: Problem with filter() input ..1. x object '.key' not found i Input ..1 is `.model_desc == "ACTUAL" | .key == "prediction" Please try this one : I don't know, its bug or feature? |
Will need to look into this. |
I have followed this tutorial, but I got error in this syntax
https://www.business-science.io/code-tools/2021/03/15/introducing-modeltime-h2o.html
Error: Problem with
filter()
input..1
. x object '.key' not found i Input..1
is `.model_desc == "ACTUAL" | .key == "prediction"My software version
Windows 10 Education 64 bit
R = 3.6.3 (64 bit)
H2O = 3.32.0.1
modeltime = 0.5.1
modeltime.h2o = 0.1.1
The text was updated successfully, but these errors were encountered: