-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathtrain.py
344 lines (309 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
Training script for the private detector
"""
import argparse
from pathlib import Path
from typing import List
import tensorflow as tf
from absl import logging as absl_logging
from private_detector.image_dataset import ImageDataset
from private_detector.private_detector import PrivateDetector
from private_detector.utils.logger import make_logger
def train(train_id: str,
train_json: List[str],
eval_json: str,
num_epochs: int,
batch_size: int,
checkpoint_dir: str,
model_dir: str,
data_format: str,
initial_learning_rate: float,
min_learning_rate: float,
min_eval_metric: float,
float_dtype: int,
steps_per_train_epoch: int,
steps_per_eval_epoch: int,
reset_on_lr_update: bool,
rotation_augmentation: float,
use_augmentation: str,
scale_crop_augmentation: float,
reg_loss_weight: float,
skip_saving_epochs: int,
sequential: bool,
eval_threshold: float,
epochs_lr_update: int) -> None:
"""
Train Private Detector model with given parameters
Parameters
----------
train_id : str
ID for this particular training run
train_json : List[str]
JSON file(s) which describes classes and contains lists of filenames of data files
eval_json : str
Validation json file which describes classes and contains lists of filenames of data files
num_epochs : int
Number of epochs to train for
batch_size : int
Number of images to process in a batch
checkpoint_dir : str
Directory to store checkpoints in
model_dir : str
Directory to store graph in
data_format : str
Data format: [channels_first, channels_last]
initial_learning_rate : float
Initial learning rate
min_learning_rate : float
Minimal learning rate
min_eval_metric : float
Minimal evaluation metric to start saving models
float_dtype : int
Float Dtype to use in image tensors
steps_per_train_epoch : int
Number of steps per train epoch
steps_per_eval_epoch : int
Number of steps per evaluation epoch
reset_on_lr_update : bool
Whether to reset to the best model after learning rate update
rotation_augmentation : float
Rotation augmentation angle, value <= 0 disables it
use_augmentation : str
Add speckle, v0, random or color distortion augmentation
scale_crop_augmentation : float
Resize image to the model's size times this scale and then randomly crop needed size
reg_loss_weight : float
L2 regularization weight
skip_saving_epochs : int
Do not save good checkpoint and update best metric for this number of the first epochs
sequential : bool
Use sequential run over randomly shuffled filenames vs equal sampling from each class
eval_threshold : float
Threshold above which to consider a prediction positive for evaluation
epochs_lr_update : int
Notes
-----
Passed as command line arguments: see help documentation in new_train --help
"""
if checkpoint_dir is None:
checkpoint_dir = Path(model_dir) / 'checkpoints' / train_id
checkpoint_dir = Path(checkpoint_dir)
checkpoint_dir.mkdir(
parents=True,
exist_ok=True
)
log_dir = Path(model_dir) / 'logs' / train_id
log_dir.mkdir(
parents=True,
exist_ok=True
)
logger = make_logger(
name=train_id,
directory=log_dir
)
mirrored_strategy = tf.distribute.MirroredStrategy()
if float_dtype == 32:
dtype = tf.float32
use_fp16 = False
elif float_dtype == 16:
dtype = tf.float16
policy = tf.keras.mixed_precision.Policy('mixed_float16')
tf.keras.mixed_precision.set_global_policy(policy)
use_fp16 = True
if scale_crop_augmentation < 1:
scale_crop_augmentation = 1
initial_learning_rate *= mirrored_strategy.num_replicas_in_sync
train_dataset = ImageDataset(
classes_files=train_json,
batch_seed=0,
batch_sequential=sequential,
batch_size=batch_size,
steps_per_epoch=steps_per_train_epoch,
rotation_augmentation=rotation_augmentation,
use_augmentation=use_augmentation,
scale_crop_augmentation=scale_crop_augmentation,
image_dtype=dtype
)
logger.info(f"Training dataset loaded from {', '.join(train_json)}")
eval_dataset = ImageDataset(
classes_files=eval_json,
batch_size=batch_size,
steps_per_epoch=steps_per_eval_epoch,
rotation_augmentation=rotation_augmentation,
use_augmentation=use_augmentation,
scale_crop_augmentation=scale_crop_augmentation,
image_dtype=dtype,
is_training=False
)
logger.info(f'Evaluation dataset loaded from {eval_json}')
class_labels = train_dataset.classes
num_classes = len(class_labels)
logger.info(f'{num_classes} classes found in dataset: {", ".join(class_labels)}')
model = PrivateDetector(
initial_learning_rate=initial_learning_rate,
class_labels=class_labels,
checkpoint_dir=checkpoint_dir,
batch_size=batch_size * mirrored_strategy.num_replicas_in_sync,
reg_loss_weight=reg_loss_weight,
use_fp16=use_fp16,
tensorboard_log_dir=log_dir,
eval_threshold=eval_threshold
)
logger.info('Model initialised')
restore_path = None
with mirrored_strategy.scope():
restore_path = tf.train.latest_checkpoint(checkpoint_dir)
if restore_path:
checkpoint_prompt = input(
f'Checkpoint found at {restore_path}: Continue Training? [y]/n:\n'
)
if checkpoint_prompt.lower() not in ['n', 'no', '0']:
model.restore(restore_path)
logger.info(
f"Restored from good checkpoint {restore_path}, running initial validation")
model.initial_validation(
restore_path=restore_path,
eval_dataset=eval_dataset,
steps_per_eval_epoch=steps_per_eval_epoch
)
else:
logger.info("Initializing from scratch, no latest checkpoint")
logger.info('Commencing training')
model.fit(
batch_size=batch_size,
train_dataset=train_dataset,
steps_per_train_epoch=steps_per_train_epoch,
eval_dataset=eval_dataset,
steps_per_eval_epoch=steps_per_eval_epoch,
reset_on_lr_update=reset_on_lr_update,
min_learning_rate=min_learning_rate,
num_epochs=num_epochs,
dtype=dtype,
skip_saving_epochs=skip_saving_epochs,
epochs_lr_update=epochs_lr_update,
min_eval_metric=min_eval_metric
)
logger.info(f'Training complete, saving model to {train_id}')
model.save(train_id)
model.save_base64_serving(f'{train_id}_base64', input_dtype=dtype)
logger.info(f'Model saved to {train_id}')
if __name__ == '__main__':
tf.get_logger().setLevel('ERROR')
absl_logging.set_verbosity(absl_logging.ERROR)
parser = argparse.ArgumentParser()
parser.add_argument(
'--train_id',
type=str,
required=True,
help='ID for this particular training run')
parser.add_argument(
'--train_json',
type=str,
required=True,
action='append',
help='JSON file which describes classes and contains lists of filenames of data files')
parser.add_argument(
'--eval_json',
type=str,
required=True,
help='Validation JSON file, just like the training file')
parser.add_argument(
'--batch_size',
type=int,
default=64,
help='Number of images to process in a batch')
parser.add_argument(
'--num_epochs',
type=int,
default=100,
help='Number of epochs to train for')
parser.add_argument(
'--skip_saving_epochs',
type=int,
default=0,
help='Do not save good checkpoint and update best metric for this many epochs')
parser.add_argument(
'--model_dir',
type=str,
default='.',
help='Directory to store graph in')
parser.add_argument(
'--checkpoint_dir',
type=str,
help='Checkpoint directory to load checkpoint from')
parser.add_argument(
'--data_format',
type=str,
default='channels_last',
choices=['channels_first', 'channels_last'],
help='Data format: [channels_first, channels_last]')
parser.add_argument(
'--initial_learning_rate',
default=1e-4,
type=float,
help='Initial learning rate')
parser.add_argument(
'--min_learning_rate',
default=1e-6,
type=float,
help='Minimal learning rate')
parser.add_argument(
'--min_eval_metric',
default=0.01,
type=float,
help='Minimal evaluation metric to start saving models')
parser.add_argument(
'--epochs_lr_update',
default=20,
type=int,
help='Maximum number of epochs without improvement used to reset/decrease learning rate')
parser.add_argument(
'--float_dtype',
default=16,
type=int,
choices=[16, 32],
help='Float Dtype to use in image tensors')
parser.add_argument(
'--steps_per_train_epoch',
default=800,
type=int,
help='Number of steps per train epoch')
parser.add_argument(
'--steps_per_eval_epoch',
default=1,
type=int,
help='Number of steps per evaluation epoch')
parser.add_argument(
'--reset_on_lr_update',
action='store_true',
help='Whether to reset to the best model after learning rate update')
parser.add_argument(
'--rotation_augmentation',
type=float,
default=0,
help='Rotation augmentation angle, value <= 0 disables it')
parser.add_argument(
'--use_augmentation',
type=str,
help='Add speckle, v0, random or color distortion augmentation')
parser.add_argument(
'--scale_crop_augmentation',
type=float,
default=1.4,
help="Resize image to the model's size * this scale and then randomly crop needed size")
parser.add_argument(
'--reg_loss_weight',
type=float,
default=0,
help='L2 regularization weight')
parser.add_argument(
'--eval_threshold',
type=float,
default=0.5,
help='Threshold above which to consider a prediction positive for evaluation')
parser.add_argument(
'--sequential',
action='store_true',
help='Sequential run over randomly shuffled filenames vs equal sampling from each class')
args = parser.parse_args()
train(**vars(args))