-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsamples.py
1287 lines (1113 loc) · 43.4 KB
/
samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from pydecred import mainnet, helpers, calc
from pydecred import constants as C
from pydecred import mpl
from pydecred.cmcapi import CMCClient
from pydecred.dcrdata import DcrDataClient, getPGArchivist
import os
import json
import time
import calendar
import matplotlib.pyplot as plt
import numpy as np
import csv
import imageio
APPDIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data")
# NiceHash price for Decred 0.0751/PH/day
NICEHASH_RATE = 0.0751/1e12
helpers.mkdir(APPDIR)
DCRDATA_URI = "http://localhost:7777/"
dataClient = DcrDataClient(DCRDATA_URI)
cmcDir = os.path.join(APPDIR, "cmc")
helpers.mkdir(cmcDir)
cmcClient = CMCClient(cmcDir)
# A model device. Should be roughly the most efficient device on the market.
Device = helpers.makeDevice(**C.MODEL_DEVICE)
def getDbHeight():
"""
Grab the best block height from a DCRData DB.
"""
archivist = getPGArchivist()
return archivist.getQueryResults("SELECT height FROM blocks ORDER BY height DESC LIMIT 1")[0][0]
def getDcrDataHashrate(height=None):
"""
Get the network hashrate average for the last day-ish.
"""
height = height if height else int(dataClient.block.best.height())
block = dataClient.block.verbose(height)
oldBlock = dataClient.block.verbose(int(height - C.DAY/mainnet.TargetTimePerBlock))
return (int(block["chainwork"], 16) - int(oldBlock["chainwork"], 16))/(block["time"] - oldBlock["time"])
def getDcrDataProfitability(xcRate, height=None, device=None):
"""
Get current mining profitability from DCRData.
"""
device = device if device else C.MODEL_DEVICE
height = height if height else int(dataClient.block.best.height())
nethash = getDcrDataHashrate(height)
gross = device["hashrate"]/nethash*calc.dailyPowRewards(height)*xcRate
power = device["power"]*24/1000*C.PRIME_POWER_RATE
return (gross - power)/device["price"]
def getDcrDataAPY(method="prospective", height=None):
"""
Get current stake profitability from DCRData.
dataClient.block.best()["ticket_pool"]["valavg"] is the average price of the
tickets in the ticket pool
dataClient.block.best()["sdiff"] is the current ticket price
dataClient.tx(dataClient.block.best.verbose()["stx"][i])["vin"][0]["amountin"] is the price paid by winner i
dataClient.tx(dataClient.block.best.verbose()["stx"][i])["vin"][1]["amountin"] is the reward for winner i (should be the same for all "stx")
"""
if method == "this.block":
block = dataClient.block.best.verbose()
juice = principal = 0
for txid in block["stx"]:
vin = dataClient.tx(txid)["vin"]
if "stakebase" in vin[0]:
juice += vin[0]["amountin"]
principal += vin[1]["amountin"]
if method == "prospective":
height = height if height else dataClient.block.best.height()
principal = dataClient.block.best()["sdiff"]
juice = calc.blockReward(height + int(mainnet.TicketPoolSize/2))*mainnet.STAKE_SPLIT/mainnet.TicketsPerBlock
if method == "current":
height = height if height else dataClient.block.best.height()
principal = dataClient.block.best()["ticket_pool"]["valavg"]
juice = calc.blockReward(height)*mainnet.STAKE_SPLIT/mainnet.TicketsPerBlock
power = 365/28
return (juice/principal + 1)**power - 1
def fetchCMCHistory():
"""
Updates the coinmarketcap history file.
"""
cmcClient.fetchHistory(C.CMC_TOKEN)
def fetchCMCPrice():
"""
Grabs the current DCR-USD exchange rate from coinmarketcap.
"""
return float(cmcClient.fetchPrice(C.CMC_TOKEN)[0]["price_usd"])
def avgPrice(pt):
"""
Averages the four candlestick values.
"""
return (pt["open"] + pt["close"] + pt["high"] + pt["low"])/4
def getCurrentParameters(asObject=False):
"""
Returns a map of commonly used network figures.
"""
params = {}
params["xcRate"] = fetchCMCPrice()
params["blockHeight"] = int(dataClient.block.best.height())
params["roi"] = getDcrDataProfitability(params["xcRate"])
params["apy"] = getDcrDataAPY()
if asObject:
return helpers.Generic_class(params)
return params
def fetchCoinbase(process=True):
"""
Fetches the actual coinbase transactions for all blocks except 1 and 2.
For network averaging. Stores results to intermediate file for use by
other plotting functions.
"""
archivist = getPGArchivist()
dcrFactor = 1e-8
query = "SELECT block_height, block_time, spent FROM transactions WHERE tx_type=0 AND block_index=0 AND is_mainchain=TRUE ORDER BY block_height LIMIT 10000 offset %i;"
blocks = []
offset = 2 # skip the genesis and next block. Non-standard coinbase txs.
while True:
print("Processing blocks %i to %i" % (offset, offset + 9999))
newRows = list(archivist.getQueryResults(query % offset))
if len(newRows) == 0:
break
for i, newRow in enumerate(newRows):
newRow = list(newRow)
newRows[i] = newRow
newRow[1] = helpers.dt2stamp(newRow[1])
newRow[2] = newRow[2]*dcrFactor
blocks.extend(newRows)
offset += 10000
filepath = os.path.join(APPDIR, "coinbase.json")
with open(filepath, "w") as f:
f.write(json.dumps(blocks))
if process:
processDailyOut(blocks)
def processDailyOut(blocks=None):
"""
Process coinbase file from fetchCoinbase into daily
totals.
"""
if not blocks:
filepath = os.path.join(APPDIR, "coinbase.json")
with open(filepath, "r") as f:
blocks = json.loads(f.read())
# height, time, value
firstDayStamp = helpers.stamp2dayStamp(blocks[0][1])
nextDayStamp = firstDayStamp + C.DAY
dayOut = 0
days = []
for height, stamp, out in blocks:
if stamp >= nextDayStamp:
days.append((helpers.stamp2dayStamp(stamp-C.DAY), dayOut))
nextDayStamp = nextDayStamp + C.DAY
dayOut = 0
dayOut += out
filepath = os.path.join(APPDIR, "daily-out.json")
with open(filepath, "w") as f:
f.write(json.dumps(days))
def getDailyOut():
"""
Load the results from processDailyOut.
"""
filepath = os.path.join(APPDIR, "daily-out.json")
with open(filepath, "r") as f:
return json.loads(f.read())
def storeDailyChainwork():
"""
Calculate the work done every day. Saves to file.
"""
archivist = getPGArchivist()
query = "SELECT height, time, chainwork FROM blocks WHERE is_mainchain=TRUE ORDER BY height"
chainworks = []
print("Querying chainwork")
rows = archivist.getQueryResults(query)
firstRow = rows[0]
firstDayStamp = helpers.stamp2dayStamp(helpers.dt2stamp(firstRow[1]))
nextDayStamp = firstDayStamp + C.DAY
lastDayBlock = False
lastBlock = False
print("Sorting chainwork")
for height, stamp, chainwork in rows:
stamp = helpers.dt2stamp(stamp)
chainwork = int(chainwork, 16)
if stamp < nextDayStamp:
lastBlock = (stamp, height, chainwork)
continue
lastStamp, lastHeight, lastWork = lastBlock
if lastDayBlock:
lastDayStamp, lastDayHeight, lastDayWork = lastDayBlock
work = (lastWork - lastDayWork)*C.DAY/(lastStamp - lastDayStamp)
chainworks.append((helpers.stamp2dayStamp(stamp), (lastHeight + lastDayHeight) / 2, work))
nextDayStamp = nextDayStamp + C.DAY
lastDayBlock = (stamp, height, chainwork)
filepath = os.path.join(APPDIR, "daily-chainwork.json")
with open(filepath, "w") as f:
f.write(json.dumps(chainworks))
def getChainwork():
"""
Loads the file from storeDailyChainwork.
"""
filepath = os.path.join(APPDIR, "daily-chainwork.json")
with open(filepath, "r") as f:
return json.loads(f.read())
def compileDailyStats():
"""
Daily tuples of (total work, miner rewards, exchange rate).
This is everything needed to calculate profitability.
"""
chainworks = getChainwork()
tChain = chainworks[0][0]
# available keys "date.string","open","high","low","close","volume","market.cap"
cmcDaily = cmcClient.loadHistory(C.CMC_TOKEN, keys=["open", "close", "volume", "market.cap"])
tCmc = cmcDaily[0][0]
dailyOut = getDailyOut()
tOut = dailyOut[0][0]
tMin = max(tChain, tCmc, tOut)
for rows in (chainworks, cmcDaily, dailyOut):
while True:
if rows[0][0] < tMin:
rows.pop(0)
else:
break
shortest = min(len(chainworks), len(cmcDaily), len(dailyOut))
days = []
for idx in range(shortest):
stamp, openv, closev, volume, cap = cmcDaily.pop(0)
chainwork = chainworks.pop(0)[2]
out = dailyOut.pop(0)[1]
price = (openv + closev) / 2
days.append((stamp, chainwork, out, price))
return days
def plotDevices(processor):
"""
Plots data for the DeviceRanges. The values plotted depend on the processor
argument. See `profitProcessor` and `RetailCapitalProcessor`.
"""
DeviceRanges = {
"asic": {},
"gpu": {}
}
DeviceRanges["asic"]["low"] = helpers.makeDevice(
"Baikal Giant B", 399, hashrate=160e9, power=410, release="2018-01-31")
DeviceRanges["asic"]["high"] = Device
DeviceRanges["gpu"]["low"] = helpers.makeDevice(
"RX 480", 200, hashrate=575e6, power=140, release="2016-06-01")
DeviceRanges["gpu"]["high"] = helpers.makeDevice(
"GTX 1080 Ti", 475, hashrate=3.8e9, power=216, release="2017-03-10")
def getDevices():
"""
A generator for the devices list.
"""
for dType in DeviceRanges:
for level in DeviceRanges[dType]:
dvc = DeviceRanges[dType][level]
dvc["level"] = level
dvc["type"] = dType
yield dvc
for dvc in getDevices():
helpers.makeDevice(dvc)
dvc["x"] = []
dvc["y"] = []
fig = plt.gcf()
plt.subplots_adjust(0.25, 0.1, 0.9, 0.9, 0, 0.1)
stats = compileDailyStats()
for dvc in getDevices():
for stat in stats:
coords = processor(dvc, stat)
if not coords:
continue
x, y = coords
dvc["x"].append(x)
dvc["y"].append(y)
gpu = DeviceRanges["gpu"]
asic = DeviceRanges["asic"]
priceAx = fig.add_subplot("311")
gpuAx = fig.add_subplot("312", sharex=priceAx)
asicAx = fig.add_subplot("313", sharex=priceAx)
for ax in (priceAx, gpuAx, asicAx):
for spine in ax.spines.values():
spine.set_color(mpl.MPL_COLOR)
plotParams = {
"gpu": {
"yticks": [0, 0.005, 0.01],
"yticklabels": ["0", "0.5", "1"],
"ylim": {
"bottom": -0.002,
"top": 0.022
},
"fillcolor": "#1d33af30",
"ax": gpuAx,
"min.alpha": min(gpu["low"]["min.profitability"], gpu["high"]["min.profitability"]),
"low": {
"linecolor": "#1d33af",
},
"high": {
"linecolor": "#1d33af"
}
},
"asic" : {
"yticks": [0, 0.003, 0.006],
"yticklabels": ["0", "0.3", "0.6"],
# "yticks" : [0, 0.05, 0.1],
# "yticklabels": ["0", "5", "10"],
"ylim": {
"bottom": -0.01,
"top": 0.12
},
"fillcolor": "#84166c30",
"ax": asicAx,
"min.alpha": min(asic["low"]["min.profitability"], asic["high"]["min.profitability"]),
"low": {
"linecolor": "#84166c"
},
"high": {
"linecolor": "#84166c"
}
}
}
fullMin = None
fullMax = None
axisFontSize = 11
for dType in ["gpu", "asic"]:
dvcs = DeviceRanges[dType]
plotDevice = plotParams[dType]
lines = []
ax = plotDevice["ax"]
for level, dvc in dvcs.items():
seriesStyle = plotDevice[level]
lines.append(list(zip(dvc["x"], dvc["y"])))
ax.plot(dvc["x"], dvc["y"], color=seriesStyle["linecolor"], linewidth=1, zorder=10)
l1, l2 = lines
tMins = [min(l1, key=lambda pt: pt[0])[0], min(l2, key=lambda pt: pt[0])[0]]
shareMin = max(tMins)
tMin = min(tMins)
fullMin = min(tMin, fullMin) if fullMin else tMin
tMaxes = [max(l1, key=lambda pt: pt[0])[0], max(l2, key=lambda pt: pt[0])[0]]
shareMax = min(tMaxes)
tMax = min(tMaxes)
fullMax = max(tMax, fullMax) if fullMax else tMax
X = [t for t, y in l1 if shareMin <= t <= shareMax]
Y1 = [y for t, y in l1 if shareMin <= t <= shareMax]
Y2 = [y for t, y in l2 if shareMin <= t <= shareMax]
ax.fill_between(X, Y1, Y2, color=plotDevice["fillcolor"], zorder=10)
ax.set_ylim(**plotDevice["ylim"])
ax.set_yticks(plotDevice["yticks"])
ax.set_yticklabels(plotDevice["yticklabels"], fontproperties=mpl.getFont("Roboto-Regular", axisFontSize))
aMin = plotDevice["min.alpha"]
priceAx.set_xlim(left=fullMin, right=fullMax)
for plotDevice in plotParams.values():
ax = plotDevice["ax"]
ax.set_xlim(left=fullMin, right=fullMax)
aMin = plotDevice["min.alpha"]
ax.plot([fullMin-1e6, fullMax+1e6], [aMin, aMin], color="#999999", linestyle="--", zorder=1)
ax.plot([fullMin-1e6, fullMax+1e6], [0, 0], color="#333333", zorder=1)
# Set axis labels on the asic plot
ax = plotParams["asic"]["ax"]
ax.set_xlim(left=fullMin, right=fullMax)
xLabels = []
xTicks = []
y, m, d = helpers.yearmonthday(fullMin)
tick = helpers.mktime(y,m)
increment = 2
# increment = 4
end = fullMax + C.DAY*120
while True:
xTicks.append(tick)
xLabels.append(time.strftime("%b-%y", time.gmtime(tick)))
m += increment
if m > 12:
m -= 12
y += 1
tick = helpers.mktime(y, m)
if tick > end:
break
ax.set_xticks(xTicks)
ax.set_xticklabels(xLabels, fontproperties=mpl.getFont("Roboto-Regular", axisFontSize))
for ax in (gpuAx, priceAx):
[label.set_visible(False) for label in ax.get_xticklabels()]
prices = [(pt["timestamp"], avgPrice(pt)) for pt in cmcClient.loadHistory(C.CMC_TOKEN) if fullMin <= pt["timestamp"] <= fullMax]
x, y = zip(*prices)
priceAx.plot(x, y, color="black")
plt.show()
def profitProcessor(dvc, stat):
"""
A processor for `plotDevices`. Returns mining profitability stats.
"""
stamp, chainwork, out, price = stat
if stamp < dvc["release"]:
return False
nethash = chainwork / C.DAY
xy = stamp, (out*price*dvc["hashrate"]/nethash - dvc["daily.power.cost"])/dvc["price"]
# if dvc["type"] == "asic" and dvc["level"] == "high":
# print(repr(nethash/1e15))
# print(repr(helpers.yearmonthday(stamp)))
return xy
def retailCapitalProcessor(dvc, stat):
"""
A processor for `plotDevices`. Returns retail capital of devices on network.
"""
stamp, chainwork, out, price = stat
if stamp < dvc["release"]:
return False
return stamp, chainwork/C.DAY/dvc["hashrate"]*dvc["price"]
def plotSigma(Ns=None):
"""
Sigma vx. y (work fraction vs. ticket fraction)
"""
Ns = Ns if Ns else [mainnet.TicketsPerBlock]
plt.subplots_adjust(0.25, 0.25, 0.90, 0.85, 0, 0.1)
fig = plt.gcf()
ax = plt.gca()
for spine in ax.spines.values():
spine.set_color(mpl.MPL_COLOR)
X = np.arange(0.01, 1.000, 0.01)
ticks = [0, 0.5, 1]
labels = ["0", "0.5", "1"]
ax.set_yticks(ticks)
ax.set_xticks(ticks)
ax.set_yticklabels(labels, fontproperties=mpl.getFont("Roboto-Regular", 12))
ax.set_xticklabels(labels, fontproperties=mpl.getFont("Roboto-Regular", 12))
linestyles = ["--", ":", "-."]
lsIdx = 0
for N in Ns:
if N == mainnet.TicketsPerBlock:
linestyle = "-"
linecolor = "#333333"
else:
linestyle = linestyles[lsIdx%len(linestyles)]
lsIdx += 1
linecolor = "#999999"
Y = [calc.hashportion(x, winners=N) for x in X]
plt.plot(X, Y, color=linecolor, linestyle=linestyle)
plt.show()
def plotPrices():
"""
Plot stake diff and exchange rate.
Update CMC history file with fetchCMCHistory() first.
"""
xcRates = [(pt["timestamp"], avgPrice(pt)) for pt in cmcClient.loadHistory(C.CMC_TOKEN)]
tMin = min(xcRates, key=lambda pt: pt[0])[0]
tMax = max(xcRates, key=lambda pt: pt[0])[0]
dataClient = DcrDataClient(DCRDATA_URI)
ts = dataClient.chart("ticket-price")
ticketStamps = [dataClient.timeStringToUnix(t) for t in ts["time"]]
pricesDCR = ts["valuef"]
filtered = [(t, v*calc.interpolate(xcRates, t)) for t, v in zip(ticketStamps, pricesDCR) if tMin < t < tMax]
filteredStamps, pricesFiat = zip(*filtered)
fig = plt.gcf()
ax = plt.gca()
ax.plot(filteredStamps, pricesFiat)
priceAx = ax.twinx()
x, y = zip(*xcRates)
priceAx.plot(x, y)
plt.show()
def calculateTicketReturns():
"""
Historical ticket return rate.
"""
archivist = getPGArchivist()
query = "SELECT height, ticket_price, vote_reward FROM votes ORDER BY height LIMIT 10000 offset %i;"
height = archivist.getQueryResults("SELECT height FROM blocks ORDER BY height DESC LIMIT 1")[0][0]
setSize = 10000
def rowSets():
offset = 0
rows = [0]
while rows:
rows = archivist.getQueryResults(query % offset)
offset += setSize
yield rows
accumulator = helpers.Generic_class(reward=0, price=0)
def takeAvg():
avg = accumulator.reward/accumulator.price
accumulator.price = 0
accumulator.reward = 0
return avg
def addPt(price, reward):
accumulator.price += price
accumulator.reward += reward
def getTime(height):
return archivist.getQueryResults("SELECT time FROM blocks WHERE height=%i LIMIT 1" % height)[0][0].timestamp()
windowSize = 144
windowIdx = int(4096/windowSize)
pts = []
for i, rowSet in enumerate(rowSets()):
offset = i*setSize
print("processing rows %i through %i" % (offset, offset+setSize-1))
for height, price, reward in rowSet:
idx = int(height/windowSize)
if idx > windowIdx:
windowIdx = idx
pts.append((idx-1, getTime(height), takeAvg()))
addPt(price, reward)
filepath = os.path.join(APPDIR, "ticket-return.json")
with open(filepath, "w") as f:
f.write(json.dumps(pts))
def plotTicketReturns():
"""
Run calculateTicketReturns to create the dataset before running
plotTicketReturns.
The plot is historical data, with units annual percentage yield.
"""
filepath = os.path.join(APPDIR, "ticket-return.json")
with open(filepath, "r") as f:
pts = json.loads(f.read())
windows, stamps, returns = list(zip(*pts))
power = 365/28
def makeAPY(r):
return (1+r)**power - 1
plt.subplots_adjust(0.15, 0.2, 0.9, 0.9, 0, 0.1)
fig = plt.gcf()
ax = plt.gca()
# ax.set_yscale('log')
tMin = min(stamps)
tMax = max(stamps)
tRange = tMax - tMin
xTicks, xLabels = mpl.getMonthTicks(tMin, tMax, 4, 3)
ax.set_xlim(left=tMin, right=tMax)
ax.set_xticks(xTicks)
ax.set_xticklabels(xLabels, fontproperties=mpl.getFont("Roboto-Regular", 11))
ax.set_xlim(left=helpers.mktime(2017, 6, 1), right=helpers.mktime(2019, 2, 1))
yTicks = [0, 10, 20, 30, 40, 50]
ax.set_yticks(yTicks)
ax.set_yticklabels([str(y) for y in yTicks], fontproperties=mpl.getFont("Roboto-Regular", 11))
ax.set_ylim(bottom=-3, top=57)
pad = 0.5*tRange
stockReturn = [7, 7]
bondReturn = [2, 2]
x = [tMin-pad, tMax+pad]
ax.plot(x, stockReturn, linestyle="--", color="#aaaaaa", linewidth=1)
ax.plot(x, bondReturn, linestyle="--", color="#aaaaaa", linewidth=1)
ax.fill_between(x, stockReturn, bondReturn, color="#00000017")
ax.plot(stamps, [makeAPY(r)*100 for r in returns], color="#333333", linewidth=1.5)
def minApy(t):
circulation = calc.getCirculatingSupply(t)
posReward = calc.blockReward(calc.timeToHeight(t))*mainnet.STAKE_SPLIT
return (mainnet.TicketExpiry*posReward/circulation/mainnet.TicketsPerBlock + 1)**(365/28) - 1
ax.plot(stamps, [minApy(t)*100 for t in stamps], color="#555555", linestyle=":")
plt.show()
def plotContour(processor, var1, var2, divisor=None, fmt="%i", lvlCount=15,
contourType="contourf", xLims=None, yLims=None, **kwargs):
"""
plotContour can create a contour plot of cost of attack variation along any
two attackCost parameters. Also surface plots and filled contours.
"""
xKey, xVals = var1
yKey, yVals = var2
fig = plt.figure(figsize=(3.5, 3.5))
if contourType == "surface":
ax = fig.add_subplot("111", projection="3d")
else:
ax = fig.add_subplot("111")#, projection="3d")
X, Y = np.meshgrid(xVals, yVals)
divisor = divisor if divisor else 1
Z = np.array([processor(**{xKey: x, yKey: y}, **kwargs).attackCost/divisor for x, y in zip(np.ravel(X), np.ravel(Y))]).reshape(X.shape)
if contourType == "contour":
plt.clabel(ax.contour(X, Y, Z, levels=lvlCount, cmap='plasma_r'), fmt=fmt)
elif contourType == "contourf":
plt.contourf(X, Y, Z, levels=lvlCount, cmap='plasma_r')
plt.colorbar()
elif contourType == "surface":
ax.plot_surface(X, Y, Z, cmap='plasma_r')
else:
raise Exception("plotContour: Unknown contourType: %s" % contourType)
if xLims:
ax.set_xlim(**xLims)
if yLims:
ax.set_ylim(**yLims)
mpl.setAxesFont("Roboto-Regular", 12, ax)
plt.show()
def plotLine(variable, divisor=1, **kwargs):
"""
Plot cost of attack for any parameter of attackCost.
variable should be a dictionary with one key,
which matches a kwargs of AttackCost, and whose value is a list or numpy
array of points on the x axis.
"""
fig = plt.gcf()
ax = plt.gca()
plt.subplots_adjust(0.22, 0.2, 0.9, 0.9, 0, 0.1)
params = getCurrentParameters()
helpers.recursiveUpdate(params, kwargs)
k = next(iter(variable))
X = variable[k]
Ytotal = []
Yrental = []
Yretail = []
Ywork = []
Ys = []
for x in X:
params[k] = x
A = calc.attackCost(**params)
Ytotal.append(A.attackCost)
Yrental.append(A.retailTerm)
Yretail.append(A.rentalTerm)
Ywork.append(A.workTerm)
Ys.append(A.stakeTerm)
linestyle = iter(["--", ":", "-."])
ax.plot(X, [y/divisor for y in Ytotal], color="#333333", label="sum")
ax.plot(X, [y/divisor for y in Ywork], color="#777777", linestyle=next(linestyle), label="work")
# ax.plot(X, [y/divisor for y in Yretail], color="#777777", linestyle=linestyle(), label="retail")
# ax.plot(X, [y/divisor for y in Yrental], color="#777777", linestyle=linestyle(), label="rental")
ax.plot(X, [y/divisor for y in Ys], color="#777777", linestyle=next(linestyle), label="stake")
mpl.setAxesFont("Roboto-Regular", 12, ax)
plt.legend()
plt.show()
def plotSupplyReturn():
"""
APY vs locked DCR, with some lines representing total circulation.
"""
fig = plt.gcf()
ax = plt.gca()
height = getDbHeight()
X = np.arange(0.02, 0.25, 0.001)
linestyle = iter([":", "-.", "-", "--"])
color = iter(["#777777", "#777777", "#333333", "#777777"])
for stakeShare in [0.10, 0.20, 0.3, 0.4]:
Y = []
for apy in X:
locked = calc.ReverseEquations.ticketPrice(apy, height, stakeSplit=stakeShare)*mainnet.TicketExpiry/1e6
Y.append(locked)
plt.plot([x*100 for x in X], Y, linestyle=next(linestyle), color=next(color), label="%i%%" % (stakeShare*100,))
supply = dataClient.supply()["supply_mined"]/1e8/1e6 # 1e8 converts from atoms. 1e9 to millions.
ax.set_ylim(bottom=0, top=26)
ax.set_xlim(left=0, right=26)
mpl.setAxesFont("Roboto-Regular", 12, ax)
# plt.legend()
for supplyTime in (helpers.mktime(2019), helpers.mktime(2025), helpers.mktime(2040)):
supply = calc.getCirculatingSupply(supplyTime)/1e6
plt.plot([0, 100],[supply, supply], linestyle=":", color="#999999")
plt.show()
def calcAlgos():
"""
The cost of attack for different algorithms based on model devices.
"""
# State-of-the-art devices for a range of algorithms.
DeviceParams = {}
DeviceParams["Blake256r14"] = Device
DeviceParams["Equihash <200,9>"] = helpers.makeDevice(
"Bitmain Z9", 3300, hashrate=41e3, power=1150)
DeviceParams["Ethash"] = helpers.makeDevice(
"Antminer E3", 3300, hashrate=41e3, power=1150)
DeviceParams["ProgPOW"] = helpers.makeDevice(
"GeForce 1080 Ti", 475, hashrate=22e6, power=275)
DeviceParams["Cryptonight V8"] = helpers.makeDevice(
"GeForce 1080 Ti", 475, hashrate=950, power=180)
DeviceParams["Cryptonight V8"] = helpers.makeDevice(
"GeForce 1080 Ti", 475, hashrate=950, power=180)
DeviceParams["Sha256"] = helpers.makeDevice(
"Antminer S15", 1475, hashrate=28e12, power=1596)
fig = plt.gcf()
ax = plt.gca()
# ax.semilogy()
ax.xaxis.set_ticks_position("both")
xcRate = 17.
height = getDbHeight()
alpha = 0 # getDcrDataProfitability(xcRate, height)
apy = getDcrDataAPY()
maxProfitability = .003
params = getCurrentParameters()
linestyle = iter(["-", "--", ":", "-", "--", ":"])
color = iter(["#333333", "#333333", "#333333", "#339999", "#339999", "#339999"])
for algo, device in DeviceParams.items():
X = np.linspace(device["min.profitability"]+1e-9, maxProfitability, 100)
Y = []
for alpha in X:
params["roi"] = alpha
Y.append(calc.attackCost(ticketFraction=1e-9, device=device, **params).attackCost)
ax.plot([x*100. for x in X], [y/1e6 for y in Y], label=algo, linestyle=next(linestyle), color=next(color), zorder=2)
ax.plot([0, 0], [-1000, 1000], color="#cccccc", linewidth=1, zorder=1)
ax.set_ylim(bottom=0, top=129)
mpl.setAxesFont("Roboto-Regular", 12, ax)
plt.legend()
plt.show()
def plotBlockCreationTime():
"""
The time it would take to create a block on a private chain, with
varying level of ticket fraction, y.
"""
fig = plt.gcf()
ax = plt.gca()
plt.subplots_adjust(0.2, 0.2, 0.8, 0.8, 0, 0.1)
ax.semilogy()
X = np.linspace(1e-9, 1.-1e-9, 1000)
Y = []
Y2 = []
for stakeOwnership in X:
fullPower = 1/calc.concensusProbability(stakeOwnership)*mainnet.TargetTimePerBlock/C.HOUR
Y.append(fullPower)
Y2.append(fullPower/calc.hashportion(stakeOwnership))
yTicks = [5/60., 1, 24, 24*30, 24*365]
yLabels = ["$ t_b $", "hour", "day", "month", "year"]
ax.set_yticks(yTicks)
ax.set_yticklabels(yLabels)
for y in yTicks:
ax.plot([-100, 200], [y, y], linewidth=1, color="#dddddd", zorder=1)
ax.set_ylim(bottom=1e-2, top=24*365*1.1)
left, right = 0, 1.
ax.set_xlim(left=left, right=right)
# ticketPrice = dataClient.stake.diff()["current"]
# xcFactor = fetchCMCPrice()*mainnet.TicketExpiry*ticketPrice/1e6
# ax2 = ax.twiny()
# ax2.set_xlim(left=left/xcFactor, right=right/xcFactor)
# setAxesFont("Roboto-Regular", 12, ax2)
mpl.setAxesFont("Roboto-Regular", 12, ax)
# ax.plot([x*xcFactor for x in X], Y, color="#333333")
ax.plot(X, Y, color="#555555", zorder=20)
ax.plot(X, Y2, color="#555555", zorder=20)
ax.fill_between(X, Y, Y2, color="#00000022", zorder=10)
plt.show()
def plotTransactions(startHeight, makePlot=True, makeCsv=False, regularOnly=True):
"""
Plot all transactions since start height. DCR vs time. Each transaction is
one pixel.
"""
archivist = getPGArchivist()
bestBlockHeight = getDbHeight()
height = startHeight
color = iter(['#00c903', '#c600c0', '#002ccc', '#d60000'])
txTypes = {
0: [],
1: [],
2: [],
3: []
}
query = "SELECT tx_type, sent, time FROM transactions WHERE is_mainchain=TRUE AND (tx_type > 0 OR block_index > 0) AND block_height >= %i AND block_height < %i"
minStamp = C.INF
maxStamp = 0
while height <= bestBlockHeight:
txs = archivist.getQueryResults(query % (height, height+1000))
for txType, sent, dt in txs:
stamp = int(dt.timestamp())
txTypes[txType].append((stamp, sent/1e8))
minStamp = min(stamp, minStamp)
maxStamp = max(stamp, maxStamp)
height += 1000
if makePlot:
fig = plt.gcf()
ax = plt.gca()
ax.semilogy()
if regularOnly:
X, Y = zip(*txTypes[0])
ax.scatter(X, Y, c="#555555", s=1, marker=".")
else:
for idx, pts in txTypes.items():
X, Y = zip(*pts)
ax.scatter(X, Y, c=next(color), s=1, marker=".")
stamp = helpers.stamp2dayStamp(minStamp)
xTicks = []
xLabels = []
tickSpacing = 5 # days
while stamp < maxStamp:
xTicks.append(stamp)
xLabels.append(time.strftime("%b %d", time.gmtime(stamp)))
stamp += 86400*tickSpacing
ax.set_xticks(xTicks)
ax.set_xticklabels(xLabels)
mpl.setAxesFont("Roboto-Regular", 12, ax)
plt.show()
if makeCsv:
csvPath = os.path.join(APPDIR, "transaction-dump_307000-312893.csv")
try:
with open(csvPath, 'w', newline='') as f:
csvWriter = csv.writer(f)
csvWriter.writerow(("timestamp", "DCR"))
csvWriter.writerows(txTypes[0]) # only regular for now
print("%i transactions dumped to CSV file at %s" % (len(txTypes[0]), csvPath))
except Exception:
print("Failed to create CSV file at %s" % csvPath)
# pool_status column
# PoolStatusLive TicketPoolStatus = iota
# PoolStatusVoted
# PoolStatusExpired
# PoolStatusMissed
# spend_type column
# TicketUnspent TicketSpendType = iota
# TicketRevoked
# TicketVoted
def plotExpirations():
archivist = getPGArchivist()
query = "SELECT tickets.spend_type, tickets.tx_hash, blocks.time FROM tickets JOIN blocks ON tickets.block_hash = blocks.hash WHERE tickets.pool_status = 2 ORDER BY tickets.block_height;"
rows = archivist.getQueryResults(query)
X = []
Y = []
fig = plt.gcf()
ax = plt.gca()
plt.subplots_adjust(0.2, 0.2, 0.8, 0.8, 0, 0.1)
def calcSplitTransactionSize():
archivist = getPGArchivist()
# tx type
# TxTypeRegular TxType = iota
# TxTypeSStx <- ticket
# TxTypeSSGen <- vote
# TxTypeSSRtx
response = dataClient.chart("ticket-price")
windowStarts = [calendar.timegm(time.strptime(t, "%Y-%m-%dT%H:%M:%SZ")) for t in response["time"]]
windowStarts.reverse()
prices = response["valuef"]
prices.reverse()
h = dataClient.block.best.height()
blocks = []
# select regular transactions, grouped by block_height and tx_hash
# 1. grab regular transaction hashes for a block
# 2. grab vouts
# 3. check if any vouts are the same as the ticket price
# 3a. optionally apply a range of accepted values around the ticket price
# 4. If so, store the sum and get the size
def ticketPrice(stamp):
while stamp < windowStarts[0]:
windowStarts.pop(0)
prices.pop(0)
if len(windowStarts) == 0:
exit('somethings wrong')
return prices[0]*1e8
txQuery = "SELECT tx_hash, block_time, size FROM transactions WHERE block_height = %i AND tx_type=0"
voutQuery = "SELECT value FROM vouts WHERE tx_hash='%s'"
length = 1000
start = h
end = h - length
splitTxSize = 0
while h > end:
if h % 100 == 0:
print("checking block %i" % h)
transactions = archivist.getQueryResults(txQuery % h)
if len(transactions) == 0:
continue
price = ticketPrice(transactions[0][1].timestamp())
for txHash, blockTime, size in transactions:
vouts = archivist.getQueryResults(voutQuery % txHash)
for val, in vouts:
if abs((val-price)/price) < 0.01:
# check if outputs go directly into a ticket
splitTxSize += size
break
h -= 1
blocks = archivist.getQueryResults("SELECT size FROM blocks WHERE height > %i" % h)
blockSum = sum([b[0] for b in blocks])
print("%i blocks" % (start-h,))
print("%iMB / %iMB = %.1f%%" % (splitTxSize/1e6, blockSum/1e6, splitTxSize/blockSum*100))
# calcSplitTransactionSize()
class animationBlock:
def __init__(self, t, value, size):
self.t = t
self.value = value
self.size = size
self.step = 0
self.ptSize = 0
self.displaySize = 0
self.fadingOut = False
def plotBlocks(blockCount=30):
mpl.setDefaultAxesColor("#777777")
archivist = getPGArchivist()
dbBlocks = archivist.getQueryResults("SELECT hash, time, size FROM blocks ORDER BY height DESC LIMIT %i" % blockCount)
query = "SELECT sent FROM transactions WHERE block_hash='%s'"
blocks = []
for blockHash, dt, size in reversed(dbBlocks):
txs = archivist.getQueryResults(query % blockHash)
totalSent = 0
for sent, in txs:
totalSent += sent
dcr = totalSent/1e8
blocks.append(animationBlock(helpers.dt2stamp(dt), dcr, size))
# Set up the animation parameters
minPtSize = 35
maxPtSize = 3000
ptRange = maxPtSize - minPtSize
windowWidth = 3 * C.HOUR
tStart = blocks[0].t
tEnd = blocks[-1].t
tRange = tEnd - tStart
animationComplete = tEnd - windowWidth
animationStep = 60 # seconds per frame
fadeFrames = 7 # frames
fadeLength = fadeFrames * animationStep
# Prepare the chart. Size must be set explicitly
fig = plt.gcf()
fig.set_dpi(160)
fig.set_size_inches(8, 4.5)
ax = plt.gca()
mpl.setFrameColor(ax, "white")
plt.subplots_adjust(0.1, 0.1, 0.9, 0.9, 0, 0)
writer = imageio.get_writer(os.path.join(APPDIR, "blocks.mp4"), mode='I', fps=30.)
plot = ax.scatter([0, 1], [0, 1], c="#666666", s=[1, 1], marker="o", linewidths=1, edgecolors='white', zorder=10)