-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKfocusing.py
1007 lines (803 loc) · 40.5 KB
/
Kfocusing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 27 15:36:24 2019
@author: btek
"""
from keras import backend as K
from keras.engine.topology import Layer
from keras import activations, regularizers, constraints
from keras import initializers
from keras.engine import InputSpec
import numpy as np
import tensorflow as tf
#Keras TF implementation of Focusing Neuron.
class FocusedLayer1D(Layer):
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer='zeros',
kernel_regularizer=None,
si_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
gain=1.0,
init_mu = 'spread',
init_w = None,
init_sigma=0.1,
init_bias = initializers.Constant(0.0),
train_mu=True,
train_sigma=True,
train_weights=True,
reg_bias=None,
normed=2,
verbose=False,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(FocusedLayer1D, self).__init__(**kwargs)
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = kernel_initializer
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.si_regularizer = regularizers.get(si_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(min_ndim=2)
self.supports_masking = True
self.gain = gain
self.init_sigma=init_sigma
self.init_mu = init_mu
self.train_mu = train_mu
self.train_sigma = train_sigma
self.train_weights = train_weights
self.normed = normed
self.verbose = verbose
self.sigma=None
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'))
print(kwargs)
#super(Focused, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) >= 2
self.input_dim = input_shape[-1]
#self.kernel = None
self.input_spec = InputSpec(min_ndim=2, axes={-1: self.input_dim})
mu, si = mu_si_initializer(self.init_mu, self.init_sigma, self.input_dim,
self.units, verbose=self.verbose)
idxs = np.linspace(0, 1.0,self.input_dim)
idxs = idxs.astype(dtype='float32')
self.idxs = K.constant(value=idxs, shape=(self.input_dim,),
name="idxs")
from keras.initializers import constant
# create trainable params.
self.mu = self.add_weight(shape=(self.units,),
initializer=constant(mu),
name="Mu",
trainable=self.train_mu)
self.sigma = self.add_weight(shape=(self.units,),
initializer=constant(si),
name="Sigma",
regularizer=self.si_regularizer,
trainable=self.train_sigma)
# idx is not trainable
# value caps for MU and SI values
# however these can change after gradient update.
# MINIMUM SIGMA CAN EFFECT THE PERFORMANCE.
# BECAUSE NEURON CAN GET SHRINK TOO MUCH IN INITIAL EPOCHS, and GET STUCK!
MIN_SI = 0.01 # zero or below si will crashed calc_u
MAX_SI = 1.0
# create shared vars.
self.MIN_SI = np.float32(MIN_SI)#, dtype='float32')
self.MAX_SI = np.float32(MAX_SI)#, dtype='float32')
w_init = initializers.get(self.kernel_initializer) if self.kernel_initializer else self.weight_initializer_fw_bg
#print("FOCUSING NEURON WEIGHT INIT", w_init)
self.W = self.add_weight(shape=(self.input_dim, self.units),
initializer=w_init,
name='Weights',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
trainable=self.train_weights)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.built = True
#super(FocusedLayer1D, self).build(input_shape) # Be sure to call this somewhere!
#super(FocusedLayer1D, self).build(input_shape)
def call(self, inputs):
u = self.calc_U()
if self.verbose:
print("weights shape", self.W.shape)
self.kernel = self.W*u
output = K.dot(inputs, self.kernel)
if self.use_bias:
output = K.bias_add(output, self.bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
assert input_shape[-1]
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def get_config(self):
config = {
'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer':
regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint),
}
base_config = super(FocusedLayer1D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def weight_initializer(self,shape):
#only implements channel last and HE uniform
initer = 'He'
distribution = 'uniform'
kernel = K.eval(self.calc_U())
W = np.zeros(shape=shape, dtype='float32')
# for Each Gaussian initialize a new set of weights
verbose=self.verbose
verbose=self.verbose
if verbose:
print("Kernel max, mean, min: ", np.max(kernel), np.mean(kernel), np.min(kernel))
print("kernel shape:", kernel.shape, ", W shape: ",W.shape)
fan_out = self.units
for c in range(W.shape[1]):
fan_in = np.sum((kernel[:,c])**2)
#fan_in *= self.input_channels no need for this in repeated U.
if initer == 'He':
std = self.gain * sqrt32(2.0) / sqrt32(fan_in)
else:
std = self.gain * sqrt32(2.0) / sqrt32(fan_in+fan_out)
std = np.float32(std)
if c == 0 and verbose:
print("Std here: ",std, type(std),W.shape[0],
" fan_in", fan_in, "mx U", np.max(kernel[:,:,:,c]))
if distribution == 'uniform':
std = std * sqrt32(3.0)
std = np.float32(std)
w_vec = np.random.uniform(low=-std, high=std, size=W.shape[:-1])
elif distribution == 'normal':
std = std/ np.float32(.87962566103423978)
w_vec = np.random.normal(scale=std, size=W.shape[0])
W[:,c] = w_vec.astype('float32')
return W
def weight_initializer_fw_bg(self,shape, dtype='float32'):
#only implements channel last and HE uniform
initer = 'Glorot'
distribution = 'uniform'
kernel = K.eval(self.calc_U())
W = np.zeros(shape=shape, dtype=dtype)
# for Each Gaussian initialize a new set of weights
verbose=self.verbose
if verbose:
print("Kernel max, mean, min: ", np.max(kernel), np.mean(kernel), np.min(kernel))
print("kernel shape:", kernel.shape, ", W shape: ",W.shape)
fan_out = self.units
sum_over_domain = np.sum(kernel**2,axis=1) # r base
sum_over_neuron = np.sum(kernel**2,axis=0)
for c in range(W.shape[1]):
for r in range(W.shape[0]):
fan_out = sum_over_domain[r]
fan_in = sum_over_neuron[c]
#fan_in *= self.input_channels no need for this in repeated U.
if initer == 'He':
std = self.gain * sqrt32(2.0) / sqrt32(fan_in)
else:
std = self.gain * sqrt32(2.0) / sqrt32(fan_in+fan_out)
std = np.float32(std)
if c == 0 and verbose:
print("Std here: ",std, type(std),W.shape[0],
" fan_in", fan_in, "mx U", np.max(kernel[:,:,:,c]))
print(r,",",c," Fan in ", fan_in, " Fan_out:", fan_out, W[r,c])
if distribution == 'uniform':
std = std * sqrt32(3.0)
std = np.float32(std)
w_vec = np.random.uniform(low=-std, high=std, size=1)
elif distribution == 'normal':
std = std/ np.float32(.87962566103423978)
w_vec = np.random.normal(scale=std, size=1)
W[r,c] = w_vec.astype('float32')
return W
def calc_U(self,verbose=False):
"""
function calculates focus coefficients.
normalizes and prunes if
"""
up= (self.idxs - K.expand_dims(self.mu,1))**2
#print("up.shape", up.shape)
#up = K.expand_dims(up,axis=1,)
#print("up.shape",up.shape)
# clipping scaler in range to prevent div by 0 or negative cov.
sigma = K.clip(self.sigma,self.MIN_SI,self.MAX_SI)
#cov_scaler = self.cov_scaler
dwn = K.expand_dims(2 * ( sigma ** 2), axis=1)
#scaler = (np.pi*self.cov_scaler**2) * (self.idxs.shape[0])
#print("down shape :",dwn.shape)
result = K.exp(-up / dwn)
kernel= K.eval(result)
if self.normed==1:
result /= K.sqrt(K.sum(K.square(result), axis=-1,keepdims=True))
elif self.normed==2:
result /= K.sqrt(K.sum(K.square(result), axis=-1,keepdims=True))
result *= K.sqrt(K.constant(self.input_dim))
if verbose:
kernel= K.eval(result)
print("RESULT after NORMED max, mean, min: ", np.max(kernel), np.mean(kernel), np.min(kernel))
#
#Normalize to get equal to WxW Filter
#masks *= K.sqrt(K.constant(self.input_channels*self.kernel_size[0]*self.kernel_size[1]))
# make norm sqrt(filterw x filterh x self.incoming_channel)
# the reason for this is if you take U all ones(self.kernel_size[0],kernel_size[1], num_channels)
# its norm will sqrt(wxhxc)
#print("Vars: ",self.input_channels,self.kernel_size[0],self.kernel_size[1])
return K.transpose(result)
def mu_si_initializer(initMu, initSi, num_incoming, num_units, verbose=True):
'''
Initialize focus centers and sigmas with regards to initMu, initSi
initMu: a string, a value, or a numpy.array for initialization
initSi: a string, a value, or a numpy.array for initialization
num_incoming: number of incoming inputs per neuron
num_units: number of neurons in this layer
'''
if isinstance(initMu, str):
if initMu == 'middle':
#print(initMu)
mu = np.repeat(.5, num_units) # On paper we have this initalization
elif initMu =='middle_random':
mu = np.repeat(.5, num_units) # On paper we have this initalization
mu += (np.random.rand(len(mu))-0.5)*(1.0/(float(20.0))) # On paper we have this initalization
elif initMu == 'spread':
#paper results were taken with this. IT EFFECTS RESULTS!!!
mu = np.linspace(0.2, 0.8, num_units)
#mu = np.linspace(0.1, 0.9, num_units)
else:
print(initMu, "Not Implemented")
elif isinstance(initMu, float): #initialize it with the given scalar
mu = np.repeat(initMu, num_units) #
elif isinstance(initMu,np.ndarray): #initialize it with the given array , must be same length of num_units
if initMu.max() > 1.0:
print("Mu must be [0,1.0] Normalizing initial Mu value")
initMu /=(num_incoming - 1.0)
mu = initMu
else:
mu = initMu
#Initialize sigma
if isinstance(initSi,str):
if initSi == 'random':
si = np.random.uniform(low=0.05, high=0.25, size=num_units)
elif initSi == 'spread':
si = np.repeat((initSi / num_units), num_units)
elif isinstance(initSi,float): #initialize it with the given scalar
si = np.repeat(initSi, num_units)#
elif isinstance(initSi, np.ndarray): #initialize it with the given array , must be same length of num_units
si = initSi
# Convert Types for GPU
mu = mu.astype(dtype='float32')
si = si.astype(dtype='float32')
if verbose:
print("mu init:", mu)
print("si init:", si)
return mu, si
def U_numeric(idxs, mus, sis, scaler, normed=2):
'''
This function provides a numeric computed focus coefficient vector for
idxs: the set of indexes (positions) to calculate Gaussian focus coefficients
mus: a numpy array of focus centers
sis: a numpy array of focus aperture sigmas
scaler: a scalar value
normed: apply sum normalization
'''
up = (idxs - mus[:, np.newaxis]) ** 2
down = (2 * (sis[:, np.newaxis] ** 2))
ex = np.exp(-up / down)
if normed==1:
ex /= np.sqrt(np.sum(np.square(ex), axis=-1,keepdims=True))
elif normed==2:
ex /= np.sqrt(np.sum(np.square(ex), axis=-1,keepdims=True))
ex *= np.sqrt(idxs.shape[0])
return (np.transpose(ex.astype(dtype='float32')))
def calculate_fi_and_weights(layer_instance):
'''
This aux function calculates its focus functions, focused weights for a given
a layer instance
'''
w = layer_instance.get_weights()
mu = w[0]
si = w[1]
we = w[2]
idxs = np.linspace(0, 1.0,layer_instance.input_shape[1])
fi = U_numeric(idxs, mu,si, scaler=1.0, normed=2)
fiwe = fi*we
return fi, we, fiwe
def sqrt32(x):
return np.sqrt(x,dtype='float32')
def create_simple_model(input_shape, num_classes=10, settings={}):
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten, BatchNormalization
from keras.layers import Activation, Permute,Concatenate, MaxPool2D
from keras.regularizers import l2
node_in = Input(shape=input_shape, name='inputlayer')
node_fl = Flatten(data_format='channels_last')(node_in)
node_ = Dropout(0.2)(node_fl)
heu= initializers.he_uniform
h = 1
for nh in settings['nhidden']:
if settings['neuron']=='focused':
init_mu = settings['focus_init_mu']
node_ = FocusedLayer1D(units=nh,
name='focus-'+str(h),
activation='linear',
init_sigma=settings['focus_init_sigma'],
init_mu=init_mu,
init_w= None,
train_sigma=settings['focus_train_si'],
train_weights=settings['focus_train_weights'],
si_regularizer=settings['focus_sigma_reg'],
train_mu = settings['focus_train_mu'],
normed=settings['focus_norm_type'])(node_)
else:
node_ = Dense(nh,name='dense-'+str(h),activation='linear',
kernel_initializer=heu())(node_)
node_ = BatchNormalization()(node_)
node_ = Activation('relu')(node_)
node_ = Dropout(0.25)(node_)
h = h + 1
node_fin = Dense(num_classes, name='softmax', activation='softmax',
kernel_initializer=initializers.he_uniform(),
kernel_regularizer=None)(node_)
model = Model(inputs=node_in, outputs=[node_fin])
return model
def create_simple_residual_model(input_shape,num_classes=10, settings={}):
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten, BatchNormalization
from keras.layers import Activation, Permute,Concatenate, MaxPool2D,Add, AveragePooling2D
from keras.regularizers import l2
node_in = Input(shape=input_shape, name='inputlayer')
node_in_pooled = AveragePooling2D()(node_in)
node_in_pooled_fl =Flatten(data_format='channels_last')(node_in_pooled)
node_fl = Flatten(data_format='channels_last')(node_in)
#node_fl = node_in
node_ = Dropout(0.2)(node_fl)
heu= initializers.he_uniform
h = 1
for nh in settings['nhidden']:
if settings['neuron']=='focused':
if settings['focus_init_mu'] == 'spread':
init_mu = np.linspace(0.1,0.90,nh)
else:
init_mu = settings['focus_init_mu']
node_ = FocusedLayer1D(units=nh,
name='focus-'+str(h),
activation='linear',
init_sigma=settings['focus_init_sigma'],
init_mu=init_mu,
init_w= None,
train_sigma=settings['focus_train_si'],
train_weights=settings['focus_train_weights'],
si_regularizer=settings['focus_sigma_reg'],
train_mu = settings['focus_train_mu'],
normed=settings['focus_norm_type'])(node_)
else:
node_ = Dense(nh,name='dense-'+str(h),activation='linear',kernel_initializer=heu())(node_)
node_ = BatchNormalization()(node_)
#node_ = Add()([node_, node_in_pooled_fl])
node_ = Activation('relu')(node_)
node_ = Dropout(0.25)(node_)
h = h + 1
node_fin = Dense(num_classes, name='softmax', activation='softmax',
kernel_initializer=initializers.he_uniform(),
kernel_regularizer=None)(node_)
model = Model(inputs=node_in, outputs=[node_fin])
return model
def create_cnn_model(input_shape, num_classes=10, settings={}):
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten,Conv2D, BatchNormalization
from keras.layers import Activation, Permute,Concatenate, MaxPool2D
from keras.regularizers import l2
node_in = Input(shape=input_shape, name='inputlayer')
node_conv1 = Conv2D(filters=settings['nfilters'][0],kernel_size=settings['kn_size'][0], padding='same',
activation='relu')(node_in)
node_conv2 = Conv2D(filters=settings['nfilters'][1],kernel_size=settings['kn_size'][0], padding='same',
activation='relu')(node_conv1)
#node_conv3 = Conv2D(filters=nfilters,kernel_size=kn_size, padding='same',
# activation='relu')(node_conv2)
node_pool = MaxPool2D((2,2))(node_conv2)
#node_pool = MaxPool2D((4,4))(node_conv2) works good.
node_fl = Flatten(data_format='channels_last')(node_pool)
#node_fl = Flatten(data_format='channels_last')(node_conv2)
#node_fl = node_in
# smaller initsigma does not work well.
node_ = Dropout(0.5)(node_fl)
heu= initializers.he_uniform
h = 1
for nh in settings['nhidden']:
if settings['neuron']=='focused':
init_mu = settings['focus_init_mu']
node_ = FocusedLayer1D(units=nh,
name='focus-'+str(h),
activation='linear',
init_sigma=settings['focus_init_sigma'],
init_mu=init_mu,
init_w= None,
train_sigma=settings['focus_train_si'],
train_weights=settings['focus_train_weights'],
si_regularizer=settings['focus_sigma_reg'],
#si_regularizer=None,
train_mu = settings['focus_train_mu'],
normed=settings['focus_norm_type'])(node_)
#si_regularizer=None,
else:
node_ = Dense(nh,name='dense-'+str(h),activation='linear',
kernel_initializer=heu())(node_)
node_ = BatchNormalization()(node_)
node_ = Activation('relu')(node_)
node_ = Dropout(0.5)(node_)
h = h + 1
node_fin = Dense(num_classes, name='softmax', activation='softmax',
kernel_initializer=initializers.he_uniform(),
kernel_regularizer=None)(node_)
#decay_check = lambda x: x==decay_epoch
model = Model(inputs=node_in, outputs=[node_fin])
return model
def test_comp(settings,random_sid=9):
import keras
from keras.optimizers import SGD
from keras.datasets import mnist,fashion_mnist, cifar10
from skimage import filters
from keras import backend as K
from keras_utils import WeightHistory as WeightHistory
from keras_utils import RecordVariable, \
PrintLayerVariableStats, PrintAnyVariable, SGDwithLR, eval_Kdict, standarize_image_025
from keras_preprocessing.image import ImageDataGenerator
K.clear_session()
epochs = settings['Epochs']
batch_size = settings['batch_size']
sid = random_sid
np.random.seed(sid)
tf.random.set_random_seed(sid)
tf.compat.v1.random.set_random_seed(sid)
# MINIMUM SIGMA CAN EFFECT THE PERFORMANCE.
# BECAUSE NEURON CAN GET SHRINK TOO MUCH IN INITIAL EPOCHS WITH LARGER GRADIENTS
#, and GET STUCK!
MIN_SIG = 0.01
MAX_SIG = 1.0
MIN_MU = 0.0
MAX_MU = 1.0
lr_dict = {'all':settings['lr_all']} #0.1 is default for MNIST
mom_dict = {'all':0.9}
decay_dict = {'all':0.9}
clip_dict ={}
for i,n in enumerate(settings['nhidden']):
lr_dict.update({'focus-'+str(i+1)+'/Sigma:0':0.01})
lr_dict.update({'focus-'+str(i+1)+'/Mu:0':0.01})
lr_dict.update({'focus-'+str(i+1)+'/Weights:0':0.1})
mom_dict.update({'focus-'+str(i+1)+'/Sigma:0':0.9})
mom_dict.update({'focus-'+str(i+1)+'/Mu:0':0.9})
decay_dict.update({'focus-'+str(i+1)+'/Sigma:0':0.5})
decay_dict.update({'focus-'+str(i+1)+'/Mu:0':0.9})
clip_dict.update({'focus-'+str(i+1)+'/Sigma:0':(MIN_SIG,MAX_SIG)})
clip_dict.update({'focus-'+str(i+1)+'/Mu:0':(MIN_MU,MAX_MU)})
print("Loading dataset")
if settings['dset']=='mnist':
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
n_channels=1
e_i = x_train.shape[0] // batch_size
decay_epochs =np.array([e_i*100, e_i*150], dtype='int64')
if settings['cnn_model']:
decay_epochs =[e_i*30,e_i*100]
elif settings['dset']=='cifar10':
img_rows, img_cols = 32,32
n_channels=3
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# works good as high as 77 for cnn-focus
#decay_dict = {'all':0.9, 'focus-1/Sigma:0': 1.1,'focus-1/Mu:0':0.9,
# 'focus-2/Sigma:0': 1.1,'focus-2/Mu:0': 0.9}
#if cnn_model: batch_size=256 # this works better than 500 for cifar-10
e_i = x_train.shape[0] // batch_size
decay_epochs =np.array([e_i*30,e_i*80,e_i*120,e_i*180], dtype='int64')
#decay_epochs =np.array([e_i*10], dtype='int64')
elif settings['dset']=='fashion':
img_rows, img_cols = 28,28
n_channels=1
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
e_i = x_train.shape[0] // batch_size
decay_epochs =np.array([e_i*100, e_i*150], dtype='int64')
if settings['cnn_model']:
decay_dict = {'all':0.9, 'focus-1/Sigma:0': 0.9,'focus-1/Mu:0':0.9,
'focus-2/Sigma:0': 0.9,'focus-2/Mu:0': 0.9}
decay_epochs =[e_i*30,e_i*100]
elif settings['dset']=='mnist-clut':
img_rows, img_cols = 60, 60
# the data, split between train and test sets
folder='/media/home/rdata/image/'
data = np.load(folder+"mnist_cluttered_60x60_6distortions.npz")
x_train, y_train = data['x_train'], np.argmax(data['y_train'],axis=-1)
x_valid, y_valid = data['x_valid'], np.argmax(data['y_valid'],axis=-1)
x_test, y_test = data['x_test'], np.argmax(data['y_test'],axis=-1)
x_train=np.vstack((x_train,x_valid))
y_train=np.concatenate((y_train, y_valid))
n_channels=1
lr_dict = {'all':0.01}
e_i = x_train.shape[0] // batch_size
decay_epochs =np.array([e_i*100, e_i*150], dtype='int64')
if settings['cnn_model']:
decay_epochs =[e_i*30,e_i*100]
elif settings['dset']=='lfw_faces':
from sklearn.datasets import fetch_lfw_people
lfw_people = fetch_lfw_people(min_faces_per_person=20, resize=0.4)
# introspect the images arrays to find the shapes (for plotting)
n_samples, img_rows, img_cols = lfw_people.images.shape
n_channels=1
X = lfw_people.data
n_features = X.shape[1]
# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]
print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)
from sklearn.model_selection import train_test_split
#X -= X.mean()
#X /= X.std()
#split into a training and testing set
x_train, x_test, y_train, y_test = train_test_split(
X, y, test_size=0.25, random_state=42)
import matplotlib.pyplot as plt
plt.imshow(X[0].reshape((img_rows,img_cols)))
plt.show()
lr_dict = {'all':0.001}
e_i = x_train.shape[0] // batch_size
decay_epochs =np.array([e_i*50,e_i*100, e_i*150], dtype='int64')
num_classes = np.unique(y_train).shape[0]
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], n_channels, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], n_channels, img_rows, img_cols)
input_shape = (n_channels, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, n_channels)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, n_channels)
input_shape = (img_rows, img_cols, n_channels)
if settings['dset']!='mnist-clut':
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train, _, x_test = standarize_image_025(x_train, tst=x_test)
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, n_channels)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, n_channels)
input_shape = (img_rows, img_cols, n_channels)
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
sigma_reg = settings['focus_sigma_reg']
sigma_reg = keras.regularizers.l2(sigma_reg) if sigma_reg is not None else sigma_reg
settings['focus_sigma_reg'] = sigma_reg
if settings['cnn_model']:
model=create_cnn_model(input_shape,num_classes, settings=settings)
else:
model=create_simple_model(input_shape, num_classes, settings=settings)
model.summary()
print (lr_dict)
print (mom_dict)
print (decay_dict)
print (clip_dict)
opt= SGDwithLR(lr_dict, mom_dict,decay_dict,clip_dict, decay_epochs)#, decay=None)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=opt,
metrics=['accuracy'])
stat_func_name = ['max: ', 'mean: ', 'min: ', 'var: ', 'std: ']
stat_func_list = [np.max, np.mean, np.min, np.var, np.std]
#callbacks = [tb]
callbacks = []
if settings['neuron']=='focused':
pr_1 = PrintLayerVariableStats("focus-1","Weights:0",stat_func_list,stat_func_name)
pr_2 = PrintLayerVariableStats("focus-1","Sigma:0",stat_func_list,stat_func_name)
pr_3 = PrintLayerVariableStats("focus-1","Mu:0",stat_func_list,stat_func_name)
rv_weights_1 = RecordVariable("focus-1","Weights:0")
rv_sigma_1 = RecordVariable("focus-1","Sigma:0")
rv_mu_1 = RecordVariable("focus-1","Mu:0")
print_lr_rates_callback = keras.callbacks.LambdaCallback(
on_epoch_end=lambda epoch, logs: print("iter: ",
K.eval(model.optimizer.iterations),
" LR RATES :",
eval_Kdict(model.optimizer.lr)))
callbacks+=[pr_1,pr_2,pr_3,rv_weights_1,rv_sigma_1, rv_mu_1,
print_lr_rates_callback]
if not settings['augment']:
print('Not using data augmentation.')
history=model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True,
callbacks=callbacks)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
# set input mean to 0 over the dataset
featurewise_center=False,
# set each sample mean to 0
samplewise_center=False,
# divide inputs by std of dataset
featurewise_std_normalization=False,
# divide each input by its std
samplewise_std_normalization=False,
# apply ZCA whitening
zca_whitening=False,
# epsilon for ZCA whitening
zca_epsilon=1e-06,
# randomly rotate images in the range (deg 0 to 180)
rotation_range=0,
# randomly shift images horizontally
width_shift_range=0.1,
# randomly shift images vertically
height_shift_range=0.1,
# set range for random shear
shear_range=0.,
# set range for random zoom
zoom_range=0.,
# set range for random channel shifts
channel_shift_range=0.,
# set mode for filling points outside the input boundaries
fill_mode='nearest',
# value used for fill_mode = "constant"
cval=0.,
# randomly flip images
horizontal_flip=True,
# randomly flip images
vertical_flip=False,
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format='channels_last',
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
history=model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
validation_data=(x_test, y_test),
epochs=epochs, verbose=1, workers=4,
callbacks=callbacks,
steps_per_epoch=x_train.shape[0]//batch_size)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
return score, history, model, callbacks
def repeated_trials(test_function=None, settings={}):
list_scores =[]
list_histories =[]
list_sigmas = []
sigmas = settings['focus_sigma_reg']
sigmas = [None] if sigmas is None or sigmas is [] else sigmas
models = []
import time
print("Delayed start ",delayed_start)
time.sleep(delayed_start)
from datetime import datetime
now = datetime.now()
timestr = now.strftime("%Y%m%d-%H%M%S")
filename = 'outputs/Kfocusing/'+settings['dset']+'/'+timestr+'_'+settings['neuron']+'.model_results.npz'
copyfile("Kfocusing.py",filename+"code.py")
for s in range(len(sigmas)): # sigmas loop, should be safe if it is empty
for i in range(settings['repeats']):
sigma_reg = sigmas[s] if sigmas else None
print("REPEAT",i,"sigma regularization", sigma_reg)
#run_settings = settings.copy()
settings['focus_sigma_reg'] = sigma_reg
sc, hs, ms, cb = test_function(random_sid=i*17,settings=settings)
list_scores.append(sc)
list_histories.append(hs)
models.append(ms)
# record current regularizer and final sigma
if settings['neuron']=='focused' and sigma_reg:
list_sigmas.append([sigma_reg, np.mean(cb[4].record[-1])])
print("Final scores", list_scores)
mx_scores = [np.max(list_histories[i].history['val_acc']) for i in range(len(list_histories))]
histories = [m.history.history for m in models]
print("Max sscores", mx_scores)
np.savez_compressed(filename,mx_scores =mx_scores, list_scores=list_scores,
modelz=histories, sigmas=list_sigmas)
return mx_scores, list_scores, histories, list_sigmas
if __name__ == "__main__":
import os
os.environ['CUDA_VISIBLE_DEVICES']="0"
os.environ['TF_FORCE_GPU_ALLOW_GROWTH']="true"
print("Run as main")
#test()
delayed_start = 0*3600
import time
from shutil import copyfile
print("Delayed start ",delayed_start)
time.sleep(delayed_start)
dset='mnist'
#dset='cifar10' # cifar is better with batch 256
#dset='fashion'
#dset = 'mnist-clut'
#dset='lfw_faces'
sigma_reg_set = None
nhidden = (784,784)
#nhidden = (256,)
#sigma_reg_set = [1e-10, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
mod={'dset':dset, 'neuron':'focused', 'nhidden':nhidden, 'cnn_model':False,
'nfilters':(32,32), 'kn_size':(5,5),
'focus_init_sigma':0.025, 'focus_init_mu':'spread','focus_train_mu':True,
'focus_train_si':True,'focus_train_weights':True,'focus_norm_type':2,
'focus_sigma_reg':sigma_reg_set,'augment':False,
'Epochs':200, 'batch_size':512,'repeats':5,
'lr_all':0.1}
# lr_all 0.1 for MNIST
# lr_all:0.01 for CIFAR-FACES-CLUT
f = test_comp
res = repeated_trials(test_function=f,settings=mod)
np.savez_compressed('outputs/Kfocusing/'+'_'+mod['dset']+'_'+'cnn'+str(mod['cnn_model'])+'_regularization.npz', res)
import matplotlib.pyplot as plt
if sigma_reg_set:
plt.plot(np.log10(sigma_reg_set),np.reshape(res[0],(-1,5)),'o')
plt.errorbar(x=np.log10(sigma_reg_set),y=np.mean(np.reshape(res[0],(-1,5)),axis=1),
yerr=np.std(np.reshape(res[0],(-1,5)),axis=1))
else:
plt.plot(np.reshape(res[0],(-1,mod['repeats'])),'o')
# focused MNIST Augmented accuracy (200epochs): ~99.25-99.30
# focused MNIST No Augment accuracy(200 epochs): ~99.25
# Max sscores [0.9926999999046325, 0.9925999997138977, 0.9921999997138977, 0.9922999998092651, 0.9923999998092652]
# res = repeated_trials(dset='cifar10',N=1,epochs=200, augment=False, mod=mod, test_function=f)
# focused CIFAR-10 Augmented accuracy(200epochs): ~0.675
# focused CIFAR-10 NONAugmented 63.5
#
# CNN results CIFAR-10 (200 epochs) max: 74.16 no augmentation
# CNN results CIFAR_10 (200 epochs)max: 76.32 with batch:32
# focus mx_1 = [0.7368000005722046, 0.7413000006675721, 0.7416000005722045, 0.741200000667572, 0.7374999997138977]
# dense mx_2 =[0.7257999999046326, 0.7290000000953675, 0.7257999997138977, 0.7214000000953674, 0.7229000000953675]
# with batch 256 and maxpool(4,4) focus reaches 81
# CNN results MNIST max : 99.63 focus, 99.63 dense
# focused mx_1 = [0.9958999999046325, 0.9958999998092651, 0.9959999999046326, 0.9960999999046326, 0.9960999999046326]
# dense mx_2=[Max sscores [0.9958999999046325, 0.9958999999046325, 0.9962999998092651, 0.9959999999046326, 0.9954999998092652]]
# lfw face simple focus augment on.
# FOCUS: Max sscores [0.7338582669656107, 0.7417322843093571, 0.7543307095062075, 0.7527559056995422, 0.7385826764144297]
# DENSE:Max sscores [0.6960629923137154, 0.6992125992699871, 0.6992125992699871, 0.7055118109297565, 0.6929133860145028]
# FIXED simple (sig=0.025) : Max sscores [0.6944881882254533, 0.6976377945246659, 0.7086614181676248, 0.6881889756270281, 0.6992125995515839]
# FIXED simple (sig=0.08) :Max sscores [0.6992125986129281, 0.6850393702664713, 0.703937007123091, 0.6866141743547335, 0.6897637797152902]
# lfw face cnn
# Focus:Max sscores [0.8944881883193189, 0.8881889766595495, 0.896062992407581, 0.8834645672107306, 0.8913385829587621]
# Dense: Max sscores [0.8787401587005675, 0.8929133870470243, 0.8866141728528841, 0.8881889757208937, 0.8787401587005675]
# FIXED simple init_si=0.08, init_mu:'spread', lr=0.1, train_mu=False, train_si=False
# MNIST : Max sscores [0.9926999997138977, 0.9919999997138977, 0.9917999997138977, 0.9923999998092652, 0.9920999997138977]
# FIXED: Max sscores [0.8913385838974179, 0.896062992407581, 0.8818897649997801, 0.8850393697032778, 0.9007874027950558] cnn sigma =0.025
# FOCUSED-C (center starting sig=0.025):
# MNIST :[0.9913999997138977, 0.9909999996185302, 0.9911999995231628, 0.9907999997138977, 0.9910999997138977]
# CLUT : [0.6750000007629394, 0.668100000667572, 0.6753000002861023, 0.6707000003814697, 0.6701000000953674]
# FASHION: [0.9082999998092651, 0.9091, 0.9068999997138977, 0.9084999999046326, 0.9088999996185303]