-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
317 lines (276 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
'''
Train a directed sdf network
'''
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import argparse
import os
from tqdm import tqdm
import numpy as np
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import trimesh
import math
# from beacon.utils import saveLossesCurve
from data import DepthData
from model import AdaptedLFN
import odf_utils
import sampling
from camera import Camera, DepthMapViewer, save_video
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def l2_loss(labels, predictions):
'''
L2 loss
'''
return torch.mean(torch.square(labels - predictions))
def train_epoch(model, train_loader, optimizer, lmbda):
bce = nn.BCELoss()
total_loss = 0.
sum_occ_loss = 0.
sum_int_loss = 0.
sum_depth_loss = 0.
total_batches = 0
for batch in tqdm(train_loader):
coordinates = batch["coordinates"].to(device)
# print(torch.max(coordinates))
occ = batch["occ"].to(device).reshape((-1,))
not_occ = torch.logical_not(occ > 0.5)
intersect = batch["intersect"].to(device).reshape((-1,))
depth = batch["depth"].to(device).reshape((-1,))
pred_occ, pred_int, pred_depth = model(coordinates)
pred_occ = pred_occ.reshape((-1,))
pred_int = pred_int.reshape((-1,))
pred_depth = pred_depth.reshape((-1,))
# print("pred occ")
# print(torch.max(pred_occ))
# print(torch.min(pred_occ))
# print('pred int')
# print(torch.max(pred_int))
# print(torch.min(pred_int))
occ_loss = bce(pred_occ, occ)
sum_occ_loss += occ_loss.detach()
# print(occ_loss.detach())
intersect_loss = bce(pred_int[not_occ], intersect[not_occ])
sum_int_loss += intersect_loss.detach()
# print(intersect_loss.detach())
depth_loss = lmbda * l2_loss(depth[torch.logical_and(not_occ,intersect > 0.5)], pred_depth[torch.logical_and(not_occ,intersect > 0.5)])
sum_depth_loss += depth_loss.detach()
# print(depth_loss.detach())
loss = occ_loss + intersect_loss + depth_loss
# print(loss.detach())
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.detach()
total_batches += 1
avg_loss = float(total_loss/total_batches)
avg_occ_loss = float(sum_occ_loss/total_batches)
avg_int_loss = float(sum_int_loss/total_batches)
avg_depth_loss = float(sum_depth_loss/total_batches)
print(f"Average Loss: {avg_loss:.4f}")
print(f"Average Occ Loss: {avg_occ_loss:.4f}")
print(f"Average Intersect Loss: {avg_int_loss:.4f}")
print(f"Average Depth Loss: {avg_depth_loss:.4f}")
return avg_loss, avg_occ_loss, avg_int_loss, avg_depth_loss
def test(model, test_loader, lmbda):
bce = nn.BCELoss()
total_loss = 0.
total_batches = 0.
all_depth_errors = []
all_occ_pred = []
all_occ_label = []
all_int_pred = []
all_int_label = []
with torch.no_grad():
for batch in tqdm(test_loader):
coordinates = batch["coordinates"].to(device)
occ = batch["occ"].to(device).reshape((-1,))
not_occ = torch.logical_not(occ > 0.5)
intersect = batch["intersect"].to(device).reshape((-1,))
depth = batch["depth"].to(device).reshape((-1,))
pred_occ, pred_int, pred_depth = model(coordinates)
pred_occ = pred_occ.reshape((-1,))
pred_int = pred_int.reshape((-1,))
pred_depth = pred_depth.reshape((-1,))
occ_loss = bce(pred_occ, occ)
intersect_loss = bce(pred_int[not_occ], intersect[not_occ])
depth_loss = lmbda * l2_loss(depth[torch.logical_and(not_occ,intersect > 0.5)], pred_depth[torch.logical_and(not_occ,intersect > 0.5)])
loss = occ_loss + intersect_loss + depth_loss
total_loss += loss
all_depth_errors.append(torch.abs(depth[torch.logical_and(not_occ,intersect > 0.5)] - pred_depth[torch.logical_and(not_occ,intersect > 0.5)]).cpu().numpy())
all_occ_pred.append(pred_occ.cpu().numpy())
all_occ_label.append(occ.cpu().numpy())
all_int_pred.append(pred_int[not_occ].cpu().numpy())
all_int_label.append(intersect[not_occ].cpu().numpy())
total_batches+=1.
print(f"\nAverage Test Loss: {float(total_loss/total_batches):.4f}")
print("Confusion Matrix Layout:")
print("[[TN FP]\n [FN TP]]")
print("\nOccupancy-")
occ_confusion_mat = confusion_matrix(np.hstack(all_occ_label), np.hstack(all_occ_pred)>0.5)
occ_tn = occ_confusion_mat[0][0]
occ_fp = occ_confusion_mat[0][1]
occ_fn = occ_confusion_mat[1][0]
occ_tp = occ_confusion_mat[1][1]
occ_precision = occ_tp/(occ_tp + occ_fp)
occ_recall = occ_tp/(occ_tp + occ_fn)
occ_accuracy = (occ_tn+occ_tp)/np.sum(occ_confusion_mat)
print(f"Average Occ Accuracy: {float(occ_accuracy*100):.2f}%")
print(f"Occ Precision: {occ_precision*100:.2f}%")
print(f"Occ Recall: {occ_recall*100:.2f}%")
print(f"Occ F1: {2*(occ_precision*occ_recall)/(occ_precision + occ_recall):.4f}")
print(occ_confusion_mat)
print("\nIntersection-")
int_confusion_mat = confusion_matrix(np.hstack(all_int_label), np.hstack(all_int_pred)>0.5)
int_tn = int_confusion_mat[0][0]
int_fp = int_confusion_mat[0][1]
int_fn = int_confusion_mat[1][0]
int_tp = int_confusion_mat[1][1]
int_precision = int_tp/(int_tp + int_fp)
int_recall = int_tp/(int_tp + int_fn)
int_accuracy = (int_tn + int_tp)/np.sum(int_confusion_mat)
print(f"Average Intersect Accuracy: {float(int_accuracy*100):.2f}%")
print(f"Intersect Precision: {int_precision*100:.2f}%")
print(f"Intersect Recall: {int_recall*100:.2f}%")
print(f"Intersect F1: {2*(int_precision*int_recall)/(int_precision + int_recall):.4f}")
print(int_confusion_mat)
print("\nDepth-")
all_depth_errors = np.hstack(all_depth_errors)
print(f"Average Depth Error: {np.mean(all_depth_errors):.4f}")
print(f"Median Depth Error: {np.median(all_depth_errors):.4f}\n")
def viz_depth(model, verts, faces, radius, show_rays=False):
'''
Visualize learned depth map and intersection mask compared to the ground truth
'''
fl = 1.0
sensor_size = [1.0,1.0]
resolution = [100,100]
zoom_out_cameras = [Camera(center=[-0.7-x*0.1,0.0,-0.7-x*0.1], direction=[1.0,0.0,1.0], focal_length=fl, sensor_size=sensor_size, sensor_resolution=resolution) for x in range(4)]
data = [cam.mesh_and_model_depthmap(model, verts, faces, radius, show_rays=show_rays) for cam in zoom_out_cameras]
DepthMapViewer(data, [0.5,]*len(data), [1.5]*len(data))
def equatorial_video(model, verts, faces, radius, n_frames, resolution, save_dir, name):
'''
Saves a rendered depth video from around the equator of the object
'''
video_dir = os.path.join(save_dir, "depth_videos")
if not os.path.exists(video_dir):
os.mkdir(video_dir)
cam_radius = 1.5
# these are the normalization bounds for coloring in the video
vmin = max(cam_radius-1.0, 0.)
vmax = vmin + 1.5
fl = 1.0
sensor_size = [1.0,1.0]
resolution = [resolution,resolution]
angle_increment = 2*math.pi / n_frames
z_vals = [np.cos(angle_increment*i)*cam_radius for i in range(n_frames)]
x_vals = [np.sin(angle_increment*i)*cam_radius for i in range(n_frames)]
circle_cameras = [Camera(center=[x_vals[i],0.0,z_vals[i]], direction=[-x_vals[i],0.0,-z_vals[i]], focal_length=fl, sensor_size=sensor_size, sensor_resolution=resolution, verbose=False) for i in range(n_frames)]
rendered_views = [cam.mesh_and_model_depthmap(model, verts, faces, radius) for cam in tqdm(circle_cameras)]
save_video(rendered_views, os.path.join(video_dir, f'equatorial_{name}_rad{radius*100:.0f}_cr{cam_radius*100:.0f}.mp4'), vmin, vmax)
if __name__ == "__main__":
print(f"Using {device}")
parser = argparse.ArgumentParser(description="A script to train and evaluate a directed distance function network")
# CONFIG
parser.add_argument("--n_workers", type=int, default=1, help="Number of workers for dataloaders. Recommended is 2*num cores")
# DATA
parser.add_argument("--samples_per_mesh", type=int, default=1000000, help="Number of rays to sample for each mesh")
parser.add_argument("--mesh_file", default="/gpfs/data/ssrinath/human-modeling/large_files/sample_data/stanford_bunny.obj", help="Source of mesh to train on")
# "F:\\ivl-data\\sample_data\\stanford_bunny.obj"
parser.add_argument("--vert_noise", type=float, default=0.01, help="Standard deviation of noise to add to vertex sampling methods")
parser.add_argument("--tan_noise", type=float, default=0.01, help="Standard deviation of noise to add to tangent sampling method")
# NOTE: need to change model/camera classes if positional encoding or coordinate type change
# parser.add_argument("--pos_enc", default=True, type=bool, help="Whether NeRF-style positional encoding should be applied to the data")
# MODEL
parser.add_argument("--lmbda", type=float, default=100., help="Multiplier for depth l2 loss")
# HYPERPARAMETERS
parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--train_batch_size", type=int, default=1000, help="Train batch size")
parser.add_argument("--test_batch_size", type=int, default=1000, help="Test batch size")
parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train (overrides --iterations)")
parser.add_argument("--radius", type=float, default=1.25, help="The radius within which all rays should orginiate (mesh is normalized to be in unit sphere")
# ACTIONS
parser.add_argument("-T", "--train", action="store_true", help="Train the network")
parser.add_argument("-t", "--test", action="store_true", help="Test the network")
parser.add_argument("-s", "--save", action="store_true", help="Save the trained network")
parser.add_argument("-l", "--load", action="store_true", help="Load the model from file")
parser.add_argument("-d", "--viz_depth", action="store_true", help="Visualize the learned depth map and intersection mask versus the ground truth")
parser.add_argument("-v", "--video", action="store_true", help="Render a video of the learned mask and depth map compared to the ground truth")
parser.add_argument("-n", "--name", type=str, required=True, help="The name of the model")
# parser.add_argument("--model_dir", type=str, default="F:\\ivl-data\\DirectedDF\\large_files\\models")
# parser.add_argument("--loss_dir", type=str, default="F:\\ivl-data\\DirectedDF\\large_files\\loss_curves")
# parser.add_argument("--model_dir", type=str, default="/data/gpfs/ssrinath/human-modeling/large_files/directedDF/model_weights")
# parser.add_argument("--loss_dir", type=str, default="/data/gpfs/ssrinath/human-modeling/large_files/directedDF/loss_curves")
parser.add_argument("--save_dir", type=str, default="/gpfs/data/ssrinath/human-modeling/DirectedDF/large_files", help="a directory where model weights, loss curves, and visualizations will be saved")
# VISUALIZATION
parser.add_argument("--show_rays", action="store_true", help="Visualize the camera's rays relative to the scene when rendering depthmaps")
parser.add_argument("--n_frames", type=int, default=100, help="Number of frames render if saving video")
parser.add_argument("--video_resolution", type=int, default=100, help="The height and width of the rendered video (in pixels)")
args = parser.parse_args()
# make sure the output directory is setup correctly
assert(os.path.exists(args.save_dir))
necessary_subdirs = ["saved_models", "loss_curves"]
for subdir in necessary_subdirs:
if not os.path.exists(os.path.join(args.save_dir, subdir)):
os.mkdir(os.path.join(args.save_dir, subdir))
model_path = os.path.join(args.save_dir, "saved_models", f"{args.name}.pt")
loss_path = os.path.join(args.save_dir, "loss_curves", args.name)
model = AdaptedLFN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# base_path = "C:\\Users\\Trevor\\Brown\\ivl-research\\large_files\\sample_data"
# instance = "50002_hips_poses_0694"
# gender = "male"
# smpl_data_path = os.path.join(base_path, f"{instance}_smpl.npy")
# faces_path = os.path.join(base_path, f"{gender}_template_mesh_faces.npy")
# smpl_data = np.load(smpl_data_path, allow_pickle=True).item()
# verts = np.array(smpl_data["smpl_mesh_v"])
# faces = np.array(np.load(faces_path, allow_pickle=True))
mesh = trimesh.load(args.mesh_file)
faces = mesh.faces
verts = mesh.vertices
verts = odf_utils.mesh_normalize(verts)
sampling_methods = [sampling.sample_uniform_ray_space,
sampling.sampling_preset_noise(sampling.sample_vertex_noise, args.vert_noise),
sampling.sampling_preset_noise(sampling.sample_vertex_all_directions, args.vert_noise),
sampling.sampling_preset_noise(sampling.sample_vertex_tangential, args.tan_noise)]
sampling_frequency = [0.0, 0.0, 1.0, 0.0]
test_sampling_frequency = [1., 0., 0., 0.]
train_data = DepthData(faces,verts,args.radius,sampling_methods,sampling_frequency,size=args.samples_per_mesh)
test_data = DepthData(faces,verts,args.radius,sampling_methods,test_sampling_frequency,size=int(args.samples_per_mesh*0.1))
train_loader = DataLoader(train_data, batch_size=args.train_batch_size, shuffle=True, drop_last=True, pin_memory=True, num_workers=args.n_workers)
test_loader = DataLoader(test_data, batch_size=args.test_batch_size, shuffle=True, drop_last=True, pin_memory=True)
if args.load:
print("Loading saved model...")
model.load_state_dict(torch.load(model_path, map_location=torch.device(device)))
if args.train:
print(f"Training for {args.epochs} epochs...")
model=model.train()
total_loss = []
occ_loss = []
int_loss = []
depth_loss = []
for e in range(args.epochs):
print(f"EPOCH {e+1}")
tl, ol, il, dl = train_epoch(model, train_loader, optimizer, args.lmbda)
total_loss.append(tl)
occ_loss.append(ol)
int_loss.append(il)
depth_loss.append(dl)
odf_utils.saveLossesCurve(total_loss, occ_loss, int_loss, depth_loss, legend=["Total", "Occupancy", "Intersection", "Depth"], out_path=loss_path, log=True)
if args.save:
print("Saving model...")
torch.save(model.state_dict(), model_path)
if args.test:
print("Testing model ...")
model=model.eval()
test(model, test_loader, args.lmbda)
if args.viz_depth:
print("Visualizing depth map...")
model=model.eval()
viz_depth(model, verts, faces, args.radius, show_rays=args.show_rays)
if args.video:
print(f"Rendering ({args.video_resolution}x{args.video_resolution}) video with {args.n_frames} frames...")
model=model.eval()
equatorial_video(model, verts, faces, args.radius, args.n_frames, args.video_resolution, args.save_dir, args.name)
print(f"{args.name} finished")