-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
229 lines (192 loc) · 8.77 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
'''
An MLP that predicts the surface depth along rays
'''
import torch
import torch.nn as nn
import odf_utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def points(points):
return points
def direction(points):
dir = points[:,3:]-points[:,:3]
norm = torch.linalg.norm(dir, dim=1)
norm = torch.hstack([norm.reshape(-1,1)]*3)
dir /= norm
return torch.hstack([points[:,:3], dir])
def pluecker(points):
dir = points[:,3:]-points[:,:3]
norm = torch.linalg.norm(dir, dim=1)
norm = torch.hstack([norm.reshape(-1,1)]*3)
dir /= norm
m = torch.cross(points[:,:3], dir, dim=1)
return torch.hstack([dir, m])
def pos_encoding(points):
return torch.tensor([[x for j in range(points.shape[1]) for x in odf_utils.positional_encoding(points[i][j])] for i in range(points.shape[0])])
# Having the model change the input parameterization at inference time allows us to use a consistent input format so we don't have to change the testing script.
# For training the input will be provided with the preprocessing already applied so that it can be done in parallel in the dataloader
preprocessing_options = {
"points": points,
"direction": direction,
"pluecker": pluecker,
}
class SimpleMLP(nn.Module):
def __init__(self,input_size=120,n_layers=5,hidden_size=200):
super().__init__()
assert(n_layers > 1)
all_layers = []
all_layers.append(nn.Linear(input_size,hidden_size))
for _ in range(n_layers-2):
all_layers.append(nn.Linear(hidden_size, hidden_size))
all_layers.append(nn.Linear(hidden_size, 3))
self.network = nn.ModuleList(all_layers)
self.activation = nn.LeakyReLU(0.1)
self.relu = nn.ReLU()
def forward(self, x):
for i in range(len(self.network)-1):
x = self.network[i](x)
x = self.activation(x)
x = self.network[-1](x)
occ = torch.sigmoid(x[:,0])
intersections = torch.sigmoid(x[:,1])
depth = self.relu(x[:,2])
return occ, intersections, depth
class AdaptedLFN(nn.Module):
'''
A DDF with structure adapted from this LFN paper https://arxiv.org/pdf/2106.02634.pdf
'''
def __init__(self, input_size=120, n_layers=6, hidden_size=256):
super().__init__()
assert(n_layers > 1)
all_layers = []
all_layers.append(nn.Linear(input_size,hidden_size))
for _ in range(n_layers-2):
all_layers.append(nn.Linear(hidden_size, hidden_size))
all_layers.append(nn.Linear(hidden_size, 3))
self.network = nn.ModuleList(all_layers)
self.relu = nn.ReLU()
self.layernorm = nn.LayerNorm(hidden_size, elementwise_affine=False)
# self.pos_enc = pos_enc
def forward(self, x):
for i in range(len(self.network)-1):
x = self.network[i](x)
x = self.relu(x)
x = self.layernorm(x)
x = self.network[-1](x)
occ = torch.sigmoid(x[:,0])
intersections = torch.sigmoid(x[:,1])
depth = self.relu(x[:,2])
return occ, intersections, depth
# def query_rays(self, points, directions):
# '''
# Returns a single depth value for each point, direction pair
# '''
# x = torch.hstack([points, directions])
# x = pos_encoding(x) if self.pos_enc else x
# x = x.to(device)
# _, intersect, depth = self.forward(x)
# return intersect, depth
class LF4D(nn.Module):
'''
A DDF with structure adapted from this LFN paper https://arxiv.org/pdf/2106.02634.pdf
'''
def __init__(self, input_size=6, n_layers=6, hidden_size=256, n_intersections=20, radius=1.25, coord_type="direction", pos_enc=True):
super().__init__()
# store args
self.n_intersections = n_intersections
self.preprocessing = preprocessing_options[coord_type]
self.pos_enc = pos_enc
self.radius = radius
assert(n_layers > 1)
# set which layers (aside from the first) should have the positional encoding passed in
self.pos_enc_layers = [4]
# Define the main network body
main_layers = []
main_layers.append(nn.Linear(input_size,hidden_size))
for l in range(n_layers-1):
if l+2 in self.pos_enc_layers:
main_layers.append(nn.Linear(hidden_size+input_size, hidden_size))
else:
main_layers.append(nn.Linear(hidden_size, hidden_size))
self.network = nn.ModuleList(main_layers)
# Define the intersection head
intersection_layers = [
nn.Linear(hidden_size, hidden_size),
nn.Linear(hidden_size, n_intersections+1) #+1 because we also need a zero intersection category
]
self.intersection_head = nn.ModuleList(intersection_layers)
# Define the depth head
depth_layers = [
nn.Linear(hidden_size, hidden_size),
nn.Linear(hidden_size, n_intersections)
]
self.depth_head = nn.ModuleList(depth_layers)
# all_layers.append(nn.Linear(hidden_size, 2*n_intersections))
# self.network = nn.ModuleList(all_layers)
# other layers
self.relu = nn.ReLU()
# No layernorm for now
# self.layernorm = nn.LayerNorm(hidden_size, elementwise_affine=False)
def forward(self, input):
x = input
for i in range(len(self.network)):
if i+1 in self.pos_enc_layers:
x = self.network[i](torch.cat([input, x], dim=1))
else:
x = self.network[i](x)
x = self.relu(x)
# x = self.layernorm(x)
# intersection head
intersections = self.intersection_head[0](x)
intersections = self.relu(intersections)
# intersections = self.layernorm(intersections)
intersections = self.intersection_head[1](intersections)
# intersections = torch.sigmoid(intersections)
# depth head
depths = self.depth_head[0](x)
depths = self.relu(depths)
# depths = self.layernorm(depths)
# enforce strictly increasing depth values
depths = self.depth_head[1](depths)
depths = self.relu(depths)
depths = torch.cumsum(depths, dim=1)
return intersections, depths
def interior_depth(self, surface_points, interior_points):
'''
Coordinates - bounding sphere surface points and directions
Interior_points - points within the bounding sphere that lie along the corresponding ray defined by coordinates
Gives the positive depth to the next surface intersection from interior_points in the specified direction (direction implicitly defined by interior+surface point pair)
Used for inference only
Returns the integer number of intersections, as well as the intersection depths
'''
coordinates = self.preprocessing(surface_points)
coordinates = pos_encoding(coordinates) if self.pos_enc else coordinates
interior_distances = torch.sqrt(torch.sum(torch.square(surface_points[:,:3] - interior_points), dim=1))
coordinates = coordinates.to(device)
intersections, depths = self.forward(coordinates)
intersections = intersections.cpu()
depths = depths.cpu()
depths -= torch.hstack([torch.reshape(interior_distances, (-1,1)),]*self.n_intersections)
n_ints = torch.argmax(intersections, dim=1)
# set invalid depths to inf
# invalid depths are ones that occur before the interior point, and ones past the predicted number of intersections
depths[depths < 0.] = float('inf')
depth_mask = torch.nn.functional.one_hot(n_ints.to(torch.int64), intersections.shape[1])
depth_mask = torch.cumsum(depth_mask, dim=1)
depth_mask = depth_mask[:,:-1]
depths[depth_mask.to(bool)] = float('inf')
# depths = torch.min(depths, dim=1)[0]
intersect = torch.min(depths, dim=1)[0] < float('inf')
return intersect, depths, n_ints
def query_rays(self, points, directions):
'''
This function can be used in the same way as a 5D ODF (i.e. query ANY point in 3D space, plus a direction, and get depth)
Returns a single depth value for each point, direction pair
Used for inference only
'''
# print("QUERY")
# print(points)
# print(directions)
combine_tuple = lambda x: list(x[0]) + list(x[1])
# the sphere intersections (two surface points) will be reparameterized in interior_depth if necessary (e.g. turned into surface point + direction)
surface_intersections = torch.tensor([combine_tuple(odf_utils.get_sphere_intersections(points[i], directions[i], self.radius)) for i in range(points.shape[0])])
return self.interior_depth(surface_intersections, points)