forked from wangjlgz/MetaTL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
130 lines (102 loc) · 4.71 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.nn import functional as F
class Embedding(nn.Module):
def __init__(self, num_ent, parameter):
super(Embedding, self).__init__()
self.device = parameter['device']
self.es = parameter['embed_dim']
self.embedding = nn.Embedding(num_ent + 1, self.es)
nn.init.xavier_uniform_(self.embedding.weight)
def forward(self, triples):
idx = [[[t[0], t[2]] for t in batch] for batch in triples]
idx = torch.LongTensor(idx).to(self.device)
return self.embedding(idx)
class MetaLearner(nn.Module):
def __init__(self, K, embed_size=100, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0.5):
super(MetaLearner, self).__init__()
self.embed_size = embed_size
self.K = K
self.out_size = out_size
self.rel_fc1 = nn.Sequential(OrderedDict([
('fc', nn.Linear(2*embed_size, num_hidden1)),
('bn', nn.BatchNorm1d(K)),
('relu', nn.LeakyReLU()),
('drop', nn.Dropout(p=dropout_p)),
]))
self.rel_fc2 = nn.Sequential(OrderedDict([
('fc', nn.Linear(num_hidden1, num_hidden2)),
('bn', nn.BatchNorm1d(K)),
('relu', nn.LeakyReLU()),
('drop', nn.Dropout(p=dropout_p)),
]))
self.rel_fc3 = nn.Sequential(OrderedDict([
('fc', nn.Linear(num_hidden2, out_size)),
('bn', nn.BatchNorm1d(K)),
]))
nn.init.xavier_normal_(self.rel_fc1.fc.weight)
nn.init.xavier_normal_(self.rel_fc2.fc.weight)
nn.init.xavier_normal_(self.rel_fc3.fc.weight)
def forward(self, inputs):
size = inputs.shape
x = inputs.contiguous().view(size[0], size[1], -1)
x = self.rel_fc1(x)
x = self.rel_fc2(x)
x = self.rel_fc3(x)
x = torch.mean(x, 1)
return x.view(size[0], 1, 1, self.out_size)
class EmbeddingLearner(nn.Module):
def __init__(self):
super(EmbeddingLearner, self).__init__()
def forward(self, h, t, r, pos_num):
score = -torch.norm(h + r - t, 2, -1).squeeze(2)
p_score = score[:, :pos_num]
n_score = score[:, pos_num:]
return p_score, n_score
class MetaTL(nn.Module):
def __init__(self, itemnum, parameter):
super(MetaTL, self).__init__()
self.device = parameter['device']
self.beta = parameter['beta']
self.dropout_p = parameter['dropout_p']
self.embed_dim = parameter['embed_dim']
self.margin = parameter['margin']
self.embedding = Embedding(itemnum, parameter)
self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=100, num_hidden1=500,
num_hidden2=200, out_size=100, dropout_p=self.dropout_p)
self.embedding_learner = EmbeddingLearner()
self.loss_func = nn.MarginRankingLoss(self.margin)
self.rel_q_sharing = dict()
def split_concat(self, positive, negative):
pos_neg_e1 = torch.cat([positive[:, :, 0, :],
negative[:, :, 0, :]], 1).unsqueeze(2)
pos_neg_e2 = torch.cat([positive[:, :, 1, :],
negative[:, :, 1, :]], 1).unsqueeze(2)
return pos_neg_e1, pos_neg_e2
def forward(self, task, iseval=False, curr_rel=''):
# transfer task string into embedding
support, support_negative, query, negative = [self.embedding(t) for t in task]
K = support.shape[1] # num of K
num_sn = support_negative.shape[1] # num of support negative
num_q = query.shape[1] # num of query
num_n = negative.shape[1] # num of query negative
rel = self.relation_learner(support)
rel.retain_grad()
rel_s = rel.expand(-1, K+num_sn, -1, -1)
if iseval and curr_rel != '' and curr_rel in self.rel_q_sharing.keys():
rel_q = self.rel_q_sharing[curr_rel]
else:
sup_neg_e1, sup_neg_e2 = self.split_concat(support, support_negative)
p_score, n_score = self.embedding_learner(sup_neg_e1, sup_neg_e2, rel_s, K)
y = torch.Tensor([1]).to(self.device)
self.zero_grad()
loss = self.loss_func(p_score, n_score, y)
loss.backward(retain_graph=True)
grad_meta = rel.grad
rel_q = rel - self.beta*grad_meta
self.rel_q_sharing[curr_rel] = rel_q
rel_q = rel_q.expand(-1, num_q + num_n, -1, -1)
que_neg_e1, que_neg_e2 = self.split_concat(query, negative)
p_score, n_score = self.embedding_learner(que_neg_e1, que_neg_e2, rel_q, num_q)
return p_score, n_score