-
Notifications
You must be signed in to change notification settings - Fork 10
/
main_kitti.py
263 lines (246 loc) · 8.82 KB
/
main_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""Modified https://github.com/bethgelab/slow_disentanglement/blob/master/main.py"""
import argparse
import shutil
import os
import json
import time
import numpy as np
import torch
os.system("pip3 install --upgrade pip")
os.system(
"pip3 install h5py tensorboard==2.1.0 tensorflow==1.13.1 spriteworld gin-config disentanglement_lib"
)
from kitti_masks.solver import Solver
from kitti_masks.dataset import return_data
from kitti_masks.evaluate_disentanglement import main as eval_dis
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def main(args, data_loader=None):
t0 = time.time()
if not args.experiment_dir:
dataset_param = ""
if "kitti" in args.dataset:
dataset_param = args.kitti_max_delta_t
elif "natural" in args.dataset:
dataset_param = args.natural_discrete
else:
dataset_param = args.data_distribution
args.experiment_dir = os.path.join(
f"{args.dataset}_{dataset_param}", f"{args.p}_{args.box_norm}"
)
args.output_dir = os.path.join(args.output_dir, args.experiment_dir)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
existing = os.listdir(args.output_dir)
if args.random_search or args.random_seeds:
if str(args.seed) in existing:
# search for unused hash
while True:
args.seed = randint(1000000, 9999999)
if str(args.seed) not in existing:
break
args.output_dir = os.path.join(args.output_dir, str(args.seed))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
args.ckpt_dir = os.path.join(args.ckpt_dir, args.experiment_dir, str(args.seed))
if not os.path.exists(args.ckpt_dir):
os.makedirs(args.ckpt_dir, exist_ok=True)
if args.use_writer:
from torch.utils.tensorboard import SummaryWriter
args.log_dir = os.path.join(args.log_dir, args.experiment_dir, str(args.seed))
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir, exist_ok=True)
writer = SummaryWriter(args.log_dir)
for arg in vars(args):
writer.add_text(arg, str(getattr(args, arg)))
with open(os.path.join(args.output_dir, "args"), "w") as f:
json.dump(args.__dict__, f)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
if args.evaluate:
eval_dis(args, data_loader.dataset)
else:
net = Solver(args, data_loader=data_loader)
failure = net.train()
if failure:
print("failed in %.2fs" % (time.time() - t0))
shutil.rmtree(args.output_dir)
else:
args.evaluate = True
data_loader, num_channel = return_data(args)
eval_dis(args, data_loader.dataset)
print("done in %.2fs" % (time.time() - t0))
# get original args back
args = parser.parse_args()
args.num_channel = num_channel
return args
### For Random Search ###
def randint(low, high):
return np.int(np.random.randint(low, high, 1)[0])
def uniform(low, high):
return np.random.uniform(low, high, 1)[0]
def loguniform(low, high):
return np.exp(np.random.uniform(np.log(low), np.log(high), 1))[0]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Disentanglement with InfoNCE/Contrastive Learning - KITTI Masks"
)
parser.add_argument("--box-norm", type=int, default=0)
parser.add_argument("--p", type=int, default=1)
parser.add_argument("--experiment-dir", type=str, default="", help="specify path")
parser.add_argument(
"--evaluate",
action="store_true",
default=False,
help="evaluate instead of train",
)
parser.add_argument(
"--specify",
default="",
type=str,
help="use argument to only compute a subset of metrics",
)
parser.add_argument(
"--random-search",
action="store_true",
default=False,
help="whether to random search for params",
)
parser.add_argument(
"--random-seeds",
action="store_true",
default=False,
help="whether to go over random seeds with UDR params",
)
parser.add_argument("--seed", default=2, type=int, help="random seed")
parser.add_argument("--beta", default=1, type=float, help="weight for kl to normal")
parser.add_argument(
"--gamma", default=10, type=float, help="weight for kl to laplace"
)
parser.add_argument(
"--rate-prior",
default=6,
type=float,
help="rate (or inverse scale) for prior laplace (larger -> sparser).",
)
parser.add_argument(
"--data-distribution", default="laplace", type=str, help="(laplace, uniform)"
)
parser.add_argument(
"--rate-data",
default=1,
type=float,
help="rate (or inverse scale) for data laplace (larger -> sparser). (-1 = rand).",
)
parser.add_argument(
"--data-k", default=-1, type=int, help="k for data uniform (-1 = rand)."
)
parser.add_argument(
"--betavae",
action="store_true",
default=False,
help="whether to do standard betavae training (gamma=0)",
)
parser.add_argument(
"--search-beta",
action="store_true",
default=False,
help="whether to do rand search over beta",
)
parser.add_argument(
"--output-dir", default="outputs", type=str, help="output directory"
)
parser.add_argument("--log-dir", default="logs", type=str, help="log directory")
parser.add_argument(
"--ckpt-dir", default="checkpoints", type=str, help="checkpoint directory"
)
parser.add_argument(
"--max-iter", default=300000, type=float, help="maximum training iteration"
)
parser.add_argument(
"--dataset",
default="kittimasks",
type=str,
help="dataset name (dsprites, cars3d,"
"smallnorb, shapes3d, mpi3d, kittimasks, natural",
)
parser.add_argument("--batch-size", default=64, type=int, help="batch size")
parser.add_argument(
"--num-workers", default=2, type=int, help="dataloader num_workers"
)
parser.add_argument(
"--image-size",
default=64,
type=int,
help="image size. now only (64,64) is supported",
)
parser.add_argument(
"--use-writer",
action="store_true",
default=False,
help="whether to use a log writer",
)
parser.add_argument(
"--z-dim", default=10, type=int, help="dimension of the representation z"
)
parser.add_argument("--lr", default=1e-4, type=float, help="learning rate")
parser.add_argument("--beta1", default=0.9, type=float, help="Adam optimizer beta1")
parser.add_argument(
"--beta2", default=0.999, type=float, help="Adam optimizer beta2"
)
parser.add_argument(
"--ckpt-name",
default="last",
type=str,
help="load previous checkpoint. insert checkpoint filename",
)
parser.add_argument(
"--log-step",
default=1000,
type=int,
help="numer of iterations after which data is logged",
)
parser.add_argument(
"--save-step",
default=10000,
type=int,
help="number of iterations after which a checkpoint is saved",
)
parser.add_argument(
"--kitti-max-delta-t",
default=1,
type=int,
help="max t difference between frames sampled from " "kitti data loader.",
)
parser.add_argument(
"--natural-discrete",
action="store_true",
default=False,
help="discretize natural sprites",
)
parser.add_argument(
"--verbose", action="store_true", default=False, help="for evaluation"
)
parser.add_argument("--cuda", action="store_true", default=False)
parser.add_argument(
"--num_runs", default=10, type=int, help="when searching over seeds, do 10"
)
args = parser.parse_args()
assert not (args.random_search and args.betavae and not args.search_beta)
assert not ((args.random_search or args.random_seeds) and args.evaluate)
data_loader, num_channel = return_data(args)
args.num_channel = num_channel
if args.random_search:
while True:
args.seed = randint(1000000, 9999999)
args.beta = uniform(1, 16) if args.search_beta else 1
args.gamma = uniform(1, 16) if not args.betavae else 0
args.rate_prior = uniform(1, 10) if not args.betavae else 1
args = main(args, data_loader=data_loader)
elif args.random_seeds:
for run in range(args.num_runs):
args.seed = randint(1000000, 9999999)
args = main(args, data_loader=data_loader)
else:
args = main(args, data_loader=data_loader)