You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
First of all... thanks a lot for this interesting work! I am trying to use it in a normal classification problem. I would like to check if it is competitive on normal problems apart of this quadratic implementation that you have on your notebook.
I am trying to use this optimization with a TextCNN architecture, where...
<ipython-input-6-9fee732f4a6d> in textCNN_per_label_loss(features, labels, mode, params)
76 opt = tf.train.GradientDescentOptimizer(0.2)
77 gav = opt.compute_gradients(loss)
---> 78 optimizer = guided_es(loss, gav, sigma=1.0, alpha=0.5, beta=2.0)
79 train_optimizer = opt.apply_gradients(optimizer)
80 return tf.estimator.EstimatorSpec(mode=mode,
<ipython-input-5-8fa40c3c8a5c> in guided_es(loss_fn, grads_and_vars, sigma, alpha, beta)
63 scale_perturb_diag=perturb_diag)
64
---> 65 dists = {v.op.name: vardist(g, v) for g, v in grads_and_vars}
66
67 # antithetic getter
<ipython-input-5-8fa40c3c8a5c> in <dictcomp>(.0)
63 scale_perturb_diag=perturb_diag)
64
---> 65 dists = {v.op.name: vardist(g, v) for g, v in grads_and_vars}
66
67 # antithetic getter
<ipython-input-5-8fa40c3c8a5c> in vardist(grad, variable)
61 return mvn_lowrank(scale_diag=scale_diag,
62 scale_perturb_factor=perturb_factor,
---> 63 scale_perturb_diag=perturb_diag)
64
65 dists = {v.op.name: vardist(g, v) for g, v in grads_and_vars}
~\.conda\envs\tensor\lib\site-packages\tensorflow\python\util\deprecation.py in new_func(*args, **kwargs)
304 'in a future version' if date is None else ('after %s' % date),
305 instructions)
--> 306 return func(*args, **kwargs)
307 return tf_decorator.make_decorator(
308 func, new_func, 'deprecated',
~\.conda\envs\tensor\lib\site-packages\tensorflow\contrib\distributions\python\ops\mvn_diag_plus_low_rank.py in __init__(self, loc, scale_diag, scale_identity_multiplier, scale_perturb_factor, scale_perturb_diag, validate_args, allow_nan_stats, name)
256 is_self_adjoint=True,
257 is_positive_definite=True,
--> 258 is_square=True)
259 super(MultivariateNormalDiagPlusLowRank, self).__init__(
260 loc=loc,
~\.conda\envs\tensor\lib\site-packages\tensorflow\python\ops\linalg\linear_operator_low_rank_update.py in __init__(self, base_operator, u, diag_update, v, is_diag_update_positive, is_non_singular, is_self_adjoint, is_positive_definite, is_square, name)
259 self._is_diag_update_positive = is_diag_update_positive
260
--> 261 self._check_shapes()
262
263 # Pre-compute the so-called "capacitance" matrix
~\.conda\envs\tensor\lib\site-packages\tensorflow\python\ops\linalg\linear_operator_low_rank_update.py in _check_shapes(self)
280
281 if self._diag_update is not None:
--> 282 uv_shape[-1].assert_is_compatible_with(self._diag_update.get_shape()[-1])
283 array_ops.broadcast_static_shape(
284 batch_shape, self._diag_update.get_shape()[:-1])
~\.conda\envs\tensor\lib\site-packages\tensorflow\python\framework\tensor_shape.py in assert_is_compatible_with(self, other)
114 if not self.is_compatible_with(other):
115 raise ValueError("Dimensions %s and %s are not compatible" % (self,
--> 116 other))
117
118 def merge_with(self, other):
ValueError: Dimensions 23 and 1 are not compatible
I am a little bit missed here. First of all, it is applicable to normal classification problems? and if so... Do you have any idea about what could be the problem?
Thanks a lot!
Best regards,
The text was updated successfully, but these errors were encountered:
Hello,
First of all... thanks a lot for this interesting work! I am trying to use it in a normal classification problem. I would like to check if it is competitive on normal problems apart of this quadratic implementation that you have on your notebook.
I am trying to use this optimization with a TextCNN architecture, where...
And I am getting the next error:
I am a little bit missed here. First of all, it is applicable to normal classification problems? and if so... Do you have any idea about what could be the problem?
Thanks a lot!
Best regards,
The text was updated successfully, but these errors were encountered: