-
Notifications
You must be signed in to change notification settings - Fork 14
/
ok_jpg.c
2032 lines (1853 loc) · 68.9 KB
/
ok_jpg.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
ok-file-formats
https://github.com/brackeen/ok-file-formats
Copyright (c) 2014-2020 David Brackeen
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
+ JPEG spec
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://www.fifi.org/doc/jhead/exif-e.html
+ Another easy-to-read JPEG decoder (written in python)
https://github.com/enmasse/jpeg_read/blob/master/jpeg_read.py
*/
#include "ok_jpg.h"
#include <stdlib.h>
#include <string.h>
#ifndef min
#define min(a, b) ((a) < (b) ? (a) : (b))
#endif
#ifndef max
#define max(a, b) ((a) > (b) ? (a) : (b))
#endif
// JPEG spec allows up to 4, but values greater than 2 are rare. The IDCT functions here only
// support up to 2.
#define MAX_SAMPLING_FACTOR 2
#define C_WIDTH (MAX_SAMPLING_FACTOR * 8)
#define MAX_COMPONENTS 3
#define HUFFMAN_LOOKUP_SIZE_BITS 10
#define HUFFMAN_LOOKUP_SIZE (1 << HUFFMAN_LOOKUP_SIZE_BITS)
#ifndef OK_NO_DEFAULT_ALLOCATOR
static void *ok_stdlib_alloc(void *user_data, size_t size) {
(void)user_data;
return malloc(size);
}
static void ok_stdlib_free(void *user_data, void *memory) {
(void)user_data;
free(memory);
}
const ok_jpg_allocator OK_JPG_DEFAULT_ALLOCATOR = {
.alloc = ok_stdlib_alloc,
.free = ok_stdlib_free,
.image_alloc = NULL
};
#endif
typedef void (*ok_jpg_idct_func)(const int16_t *const input, uint8_t *output);
typedef struct {
uint8_t id;
uint8_t H;
uint8_t V;
uint8_t Tq;
uint8_t Td;
uint8_t Ta;
uint8_t output[C_WIDTH * C_WIDTH];
int16_t pred;
int16_t *blocks;
size_t next_block;
int blocks_v;
int blocks_h;
int eob_run;
ok_jpg_idct_func idct;
bool complete;
} ok_jpg_component;
typedef struct {
uint16_t code[256];
uint8_t val[256];
uint8_t size[257];
uint8_t lookup_num_bits[HUFFMAN_LOOKUP_SIZE];
uint8_t lookup_val[HUFFMAN_LOOKUP_SIZE];
uint8_t lookup_ac_num_bits[HUFFMAN_LOOKUP_SIZE];
int16_t lookup_ac_val[HUFFMAN_LOOKUP_SIZE];
int maxcode[16];
int mincode[16];
int valptr[16];
int count; // "lastk" in spec
} ok_jpg_huffman_table;
typedef struct {
// Output image
ok_jpg *jpg;
// Allocator
ok_jpg_allocator allocator;
void *allocator_user_data;
// Decode options
bool color_rgba;
bool flip_x;
bool flip_y;
bool rotate;
bool info_only;
// Input
ok_jpg_input input;
void *input_user_data;
uint8_t input_buffer[256];
uint8_t *input_buffer_start;
uint8_t *input_buffer_end;
uint32_t input_buffer_bits;
int input_buffer_bit_count;
// State
bool progressive;
bool eoi_found;
bool sof_found;
bool eof_found;
int next_marker;
int restart_intervals;
int restart_intervals_remaining;
int next_restart;
// JPEG data
uint16_t in_width;
uint16_t in_height;
int data_units_x;
int data_units_y;
int num_components;
ok_jpg_component components[MAX_COMPONENTS];
uint8_t q_table[4][8 * 8];
// Scan
int num_scan_components;
int scan_components[MAX_COMPONENTS];
int scan_start; // "Ss" in spec
int scan_end; // "Se"
int scan_prev_scale; // "Ah"
int scan_scale; // "Al"
ok_jpg_huffman_table dc_huffman_tables[4];
ok_jpg_huffman_table ac_huffman_tables[4];
bool huffman_error;
} ok_jpg_decoder;
#define ok_jpg_error(jpg, error_code, message) ok_jpg_set_error((jpg), (error_code))
static void ok_jpg_set_error(ok_jpg *jpg, ok_jpg_error error_code) {
if (jpg) {
jpg->width = 0;
jpg->height = 0;
jpg->error_code = error_code;
}
}
static inline uint8_t ok_read_uint8(ok_jpg_decoder *decoder) {
if (decoder->input_buffer_start == decoder->input_buffer_end) {
size_t len = decoder->input.read(decoder->input_user_data, decoder->input_buffer,
sizeof(decoder->input_buffer));
decoder->input_buffer_start = decoder->input_buffer;
decoder->input_buffer_end = decoder->input_buffer + len;
if (len == 0) {
return 0;
}
}
return *decoder->input_buffer_start++;
}
static bool ok_read(ok_jpg_decoder *decoder, uint8_t *buffer, size_t length) {
size_t available = (size_t)(decoder->input_buffer_end - decoder->input_buffer_start);
if (available) {
size_t len = min(length, available);
memcpy(buffer, decoder->input_buffer_start, len);
decoder->input_buffer_start += len;
length -= len;
if (length == 0) {
return true;
}
buffer += len;
}
if (decoder->input.read(decoder->input_user_data, buffer, length) == length) {
return true;
} else {
decoder->eof_found = true;
ok_jpg_error(decoder->jpg, OK_JPG_ERROR_IO, "Read error: error calling input function.");
return false;
}
}
static bool ok_seek(ok_jpg_decoder *decoder, long length) {
if (length == 0) {
return true;
} else if (length < 0) {
ok_jpg_error(decoder->jpg, OK_JPG_ERROR_IO, "Seek error: negative seek unsupported.");
return false;
}
size_t available = (size_t)(decoder->input_buffer_end - decoder->input_buffer_start);
size_t len = min((size_t)length, available);
decoder->input_buffer_start += len;
length -= len;
if (length > 0) {
if (decoder->input.seek(decoder->input_user_data, length)) {
return true;
} else {
decoder->eof_found = true;
ok_jpg_error(decoder->jpg, OK_JPG_ERROR_IO, "Seek error: error calling input function.");
return false;
}
} else {
return true;
}
}
#ifndef OK_NO_STDIO
static size_t ok_file_read(void *user_data, uint8_t *buffer, size_t length) {
return fread(buffer, 1, length, (FILE *)user_data);
}
static bool ok_file_seek(void *user_data, long count) {
return fseek((FILE *)user_data, count, SEEK_CUR) == 0;
}
static const ok_jpg_input OK_JPG_FILE_INPUT = {
.read = ok_file_read,
.seek = ok_file_seek,
};
#endif
static void ok_jpg_decode(ok_jpg *jpg, ok_jpg_decode_flags decode_flags,
ok_jpg_input input, void *input_user_data,
ok_jpg_allocator allocator, void *allocator_user_data);
// MARK: Public API
#if !defined(OK_NO_STDIO) && !defined(OK_NO_DEFAULT_ALLOCATOR)
ok_jpg ok_jpg_read(FILE *file, ok_jpg_decode_flags decode_flags) {
return ok_jpg_read_with_allocator(file, decode_flags, OK_JPG_DEFAULT_ALLOCATOR, NULL);
}
#endif
#if !defined(OK_NO_STDIO)
ok_jpg ok_jpg_read_with_allocator(FILE *file, ok_jpg_decode_flags decode_flags,
ok_jpg_allocator allocator, void *allocator_user_data) {
ok_jpg jpg = { 0 };
if (file) {
ok_jpg_decode(&jpg, decode_flags, OK_JPG_FILE_INPUT, file, allocator, allocator_user_data);
} else {
ok_jpg_error(&jpg, OK_JPG_ERROR_API, "File not found");
}
return jpg;
}
#endif
ok_jpg ok_jpg_read_from_input(ok_jpg_decode_flags decode_flags,
ok_jpg_input input_callbacks, void *input_callbacks_user_data,
ok_jpg_allocator allocator, void *allocator_user_data) {
ok_jpg jpg = { 0 };
ok_jpg_decode(&jpg, decode_flags, input_callbacks, input_callbacks_user_data,
allocator, allocator_user_data);
return jpg;
}
// MARK: JPEG bit reading
static inline uint16_t readBE16(const uint8_t *data) {
return (uint16_t)((data[0] << 8) | data[1]);
}
static inline uint32_t readBE32(const uint8_t *data) {
return (((uint32_t)data[0] << 24) |
((uint32_t)data[1] << 16) |
((uint32_t)data[2] << 8) |
((uint32_t)data[3] << 0));
}
static inline uint16_t readLE16(const uint8_t *data) {
return (uint16_t)((data[1] << 8) | data[0]);
}
static inline uint32_t readLE32(const uint8_t *data) {
return (((uint32_t)data[3] << 24) |
((uint32_t)data[2] << 16) |
((uint32_t)data[1] << 8) |
((uint32_t)data[0] << 0));
}
// Load bits without reading them
static inline void ok_jpg_load_bits(ok_jpg_decoder *decoder, int num_bits) {
while (decoder->input_buffer_bit_count < num_bits) {
if (decoder->next_marker != 0) {
decoder->input_buffer_bits <<= 8;
decoder->input_buffer_bit_count += 8;
} else {
uint8_t b = ok_read_uint8(decoder);
if (b == 0xff) {
uint8_t marker = ok_read_uint8(decoder);
if (marker != 0) {
decoder->next_marker = marker;
b = 0;
}
}
decoder->input_buffer_bits = (decoder->input_buffer_bits << 8) | b;
decoder->input_buffer_bit_count += 8;
}
}
}
// Assumes at least num_bits of data was previously loaded in ok_jpg_load_bits
static inline int ok_jpg_peek_bits(ok_jpg_decoder *decoder, int num_bits) {
return (int)((decoder->input_buffer_bits >> (decoder->input_buffer_bit_count - num_bits)) &
((1 << num_bits) - 1));
}
// Assumes at least num_bits of data was previously loaded in ok_jpg_load_bits
static inline void ok_jpg_consume_bits(ok_jpg_decoder *decoder, int num_bits) {
decoder->input_buffer_bit_count -= num_bits;
}
static inline void ok_jpg_dump_bits(ok_jpg_decoder *decoder) {
decoder->input_buffer_bits = 0;
decoder->input_buffer_bit_count = 0;
}
static inline int ok_jpg_load_next_bits(ok_jpg_decoder *decoder, int num_bits) {
ok_jpg_load_bits(decoder, num_bits);
int mask = (1 << num_bits) - 1;
decoder->input_buffer_bit_count -= num_bits;
return (int)(decoder->input_buffer_bits >> decoder->input_buffer_bit_count) & mask;
}
static inline int ok_jpg_extend(const int v, const int t) {
// Figure F.12
if (v < (1 << (t - 1))) {
return v + ((-1) << t) + 1;
} else {
return v;
}
}
// MARK: Huffman decoding
static bool ok_jpg_generate_huffman_table(ok_jpg_huffman_table *huff, const uint8_t *bits) {
// JPEG spec: "Generate_size_table"
int k = 0;
for (uint8_t i = 1; i <= 16; i++) {
uint8_t len = bits[i];
if (len == 0) {
continue;
} else if ((unsigned)k + len >= sizeof(huff->size)) {
return false;
} else {
memset(huff->size + k, i, len);
k += len;
}
}
huff->size[k] = 0;
huff->count = k;
// JPEG spec: "Generate_code_table"
k = 0;
uint16_t code = 0;
int si = huff->size[0];
while (true) {
huff->code[k] = code;
code++;
k++;
int si2 = huff->size[k];
if (si2 == 0) {
break;
}
if (si2 > si) {
code <<= (si2 - si);
si = si2;
}
}
// JPEG spec: "Decoder_tables"
int j = 0;
for (int i = 0; i < 16; i++) {
if (bits[i + 1] == 0) {
huff->maxcode[i] = -1;
} else {
huff->valptr[i] = j;
huff->mincode[i] = huff->code[j];
j += bits[i + 1];
huff->maxcode[i] = huff->code[j - 1];
if (i >= HUFFMAN_LOOKUP_SIZE_BITS) {
huff->maxcode[i] = (huff->maxcode[i] << (15 - i)) | ((1 << (15 - i)) - 1);
}
}
}
return true;
}
static void ok_jpg_generate_huffman_table_lookups(ok_jpg_huffman_table *huff, bool is_ac_table) {
// Look up table for codes that use N bits or less (most of them)
for (int q = 0; q < HUFFMAN_LOOKUP_SIZE; q++) {
huff->lookup_num_bits[q] = 0;
for (uint8_t i = 0; i < HUFFMAN_LOOKUP_SIZE_BITS; i++) {
uint8_t num_bits = i + 1;
int code = q >> (HUFFMAN_LOOKUP_SIZE_BITS - num_bits);
if (code <= huff->maxcode[i]) {
huff->lookup_num_bits[q] = num_bits;
int j = huff->valptr[i];
j += code - huff->mincode[i];
huff->lookup_val[q] = huff->val[j];
break;
}
}
}
if (is_ac_table) {
// Additional lookup table to get both RS and extended value
for (int q = 0; q < HUFFMAN_LOOKUP_SIZE; q++) {
huff->lookup_ac_num_bits[q] = 0;
int num_bits = huff->lookup_num_bits[q];
if (num_bits > 0) {
int rs = huff->lookup_val[q];
int r = rs >> 4;
int s = rs & 0x0f;
int total_bits = num_bits;
if (s > 0) {
total_bits += s;
} else if (r > 0 && r < 0x0f) {
total_bits += r;
}
if (total_bits <= HUFFMAN_LOOKUP_SIZE_BITS) {
huff->lookup_ac_num_bits[q] = (uint8_t)total_bits;
if (s > 0) {
int v = (q >> (HUFFMAN_LOOKUP_SIZE_BITS - total_bits)) & ((1 << s) - 1);
huff->lookup_ac_val[q] = (int16_t)ok_jpg_extend(v, s);
} else if (r > 0 && r < 0x0f) {
int v = (q >> (HUFFMAN_LOOKUP_SIZE_BITS - total_bits)) & ((1 << r) - 1);
huff->lookup_ac_val[q] = (int16_t)((1 << r) + v - 1);
} else {
huff->lookup_ac_val[q] = 0;
}
}
}
}
}
}
static inline uint8_t ok_jpg_huffman_decode(ok_jpg_decoder *decoder,
const ok_jpg_huffman_table *table) {
// JPEG spec: "Decode" (Figure F.16)
// First, try lookup tables
ok_jpg_load_bits(decoder, 16);
int code = ok_jpg_peek_bits(decoder, HUFFMAN_LOOKUP_SIZE_BITS);
int num_bits = table->lookup_num_bits[code];
if (num_bits != 0) {
ok_jpg_consume_bits(decoder, num_bits);
return table->lookup_val[code];
}
// Next, try a code up to 16-bits
code = ok_jpg_peek_bits(decoder, 16);
for (int i = HUFFMAN_LOOKUP_SIZE_BITS; i < 16; i++) {
if (code <= table->maxcode[i]) {
ok_jpg_consume_bits(decoder, i + 1);
code >>= (15 - i);
int j = table->valptr[i];
j += code - table->mincode[i];
return table->val[j];
}
}
decoder->huffman_error = true;
ok_jpg_error(decoder->jpg, OK_JPG_ERROR_INVALID, "Invalid huffman code");
return 0;
}
// MARK: JPEG color conversion
static inline uint8_t ok_jpg_clip_uint8(const int x) {
return ((unsigned int)x) < 0xff ? (uint8_t)x : (x < 0 ? 0 : 0xff);
}
static inline uint8_t ok_jpg_clip_fp_uint8(const int fx) {
return ((unsigned int)fx) < 0xff0000 ? (uint8_t)(fx >> 16) : (fx < 0 ? 0 : 0xff);
}
static inline void ok_jpg_convert_YCbCr_to_RGB(uint8_t Y, uint8_t Cb, uint8_t Cr,
uint8_t *r, uint8_t *g, uint8_t *b) {
// From the JFIF spec. Converted to 16:16 fixed point.
static const int fx1 = 91881; // 1.402
static const int fx2 = -22553; // 0.34414
static const int fx3 = -46802; // 0.71414
static const int fx4 = 116130; // 1.772
const int fy = (Y << 16) + (1 << 15);
const int fr = fy + fx1 * (Cr - 128);
const int fg = fy + fx2 * (Cb - 128) + fx3 * (Cr - 128);
const int fb = fy + fx4 * (Cb - 128);
*r = ok_jpg_clip_fp_uint8(fr);
*g = ok_jpg_clip_fp_uint8(fg);
*b = ok_jpg_clip_fp_uint8(fb);
}
// Convert from grayscale to RGBA
static void ok_jpg_convert_data_unit_grayscale(const uint8_t *y, uint8_t *output,
const int x_inc, const int y_inc,
const int max_width, const int max_height) {
for (int v = 0; v < max_height; v++) {
uint8_t *out = output;
for (int x = 0; x < max_width; x++) {
out[0] = y[x];
out[1] = y[x];
out[2] = y[x];
out[3] = 0xff;
out += x_inc;
}
y += C_WIDTH;
output += y_inc;
}
}
// Convert from YCbCr to RGBA
static void ok_jpg_convert_data_unit_color(const uint8_t *y, const uint8_t *cb, const uint8_t *cr,
uint8_t *output, bool rgba,
const int x_inc, const int y_inc,
const int max_width, const int max_height) {
if (rgba) {
for (int v = 0; v < max_height; v++) {
uint8_t *out = output;
for (int x = 0; x < max_width; x++) {
ok_jpg_convert_YCbCr_to_RGB(y[x], cb[x], cr[x], out, out + 1, out + 2);
out[3] = 0xff;
out += x_inc;
}
y += C_WIDTH;
cb += C_WIDTH;
cr += C_WIDTH;
output += y_inc;
}
}
else { // bgra
for (int v = 0; v < max_height; v++) {
uint8_t *out = output;
for (int x = 0; x < max_width; x++) {
ok_jpg_convert_YCbCr_to_RGB(y[x], cb[x], cr[x], out + 2, out + 1, out);
out[3] = 0xff;
out += x_inc;
}
y += C_WIDTH;
cb += C_WIDTH;
cr += C_WIDTH;
output += y_inc;
}
}
}
static void ok_jpg_convert_data_unit(ok_jpg_decoder *decoder, int data_unit_x, int data_unit_y) {
ok_jpg *jpg = decoder->jpg;
ok_jpg_component *c = decoder->components;
int x = data_unit_x * c->H * 8;
int y = data_unit_y * c->V * 8;
const int width = min(c->H * 8, decoder->in_width - x);
const int height = min(c->V * 8, decoder->in_height - y);
int x_inc = 4;
int y_inc = (int)jpg->stride;
uint8_t *data = jpg->data;
if (decoder->rotate) {
int temp = x;
x = y;
y = temp;
}
if (decoder->flip_x) {
data += (jpg->width * 4) - ((size_t)x + 1) * (size_t)x_inc;
x_inc = -x_inc;
} else {
data += (size_t)x * (size_t)x_inc;
}
if (decoder->flip_y) {
data += ((jpg->height - (size_t)y - 1) * (size_t)y_inc);
y_inc = -y_inc;
} else {
data += (size_t)y * (size_t)y_inc;
}
if (decoder->rotate) {
int temp = x_inc;
x_inc = y_inc;
y_inc = temp;
}
if (decoder->num_components == 1) {
ok_jpg_convert_data_unit_grayscale(c->output, data, x_inc, y_inc, width, height);
} else {
ok_jpg_convert_data_unit_color(c->output, (c + 1)->output, (c + 2)->output,
data, decoder->color_rgba,
x_inc, y_inc, width, height);
}
}
// MARK: IDCT
// From JPEG spec, "A.3.3"
//
// 1D Inverse Discrete Cosine Transform
// The 1D versions were created by first creating a naive implementation, and then unrolling loops
// and optimizing by hand.
//
// Once loops were unrolled, redundant computations were obvious, and they could be eliminated.
// 1. Converted to integer (fixed-point)
// 2. Scaled output by sqrt(2).
//
// Step 1: ok_jpg_idct_1d_col* scales output by ((1 << 12) * sqrt(2)).
// Shift-right by 8 so output is scaled ((1 << 4) * sqrt(2)).
//
// Step 2: ok_jpg_idct_1d_row* also scales output by ((1 << 12) * sqrt(2)), for a total output
// scale of (1 << 17).
// Shift by 19 to get rid of the scale and to divide by 4 at the same time.
// (Divide by 4 per the IDCT formula, JPEG spec section A.3.3)
#define ok_jpg_idct_1d_8(v0, v1, v2, v3, v4, v5, v6, v7) do { \
static const int c1 = 5681; /* cos(1*pi/16) * sqrt(2) * (1 << 12) */ \
static const int c2 = 5352; /* cos(2*pi/16) * sqrt(2) * (1 << 12) */ \
static const int c3 = 4816; /* cos(3*pi/16) * sqrt(2) * (1 << 12) */ \
static const int c5 = 3218; /* cos(5*pi/16) * sqrt(2) * (1 << 12) */ \
static const int c6 = 2217; /* cos(6*pi/16) * sqrt(2) * (1 << 12) */ \
static const int c7 = 1130; /* cos(7*pi/16) * sqrt(2) * (1 << 12) */ \
\
/* Even part: 3 mults */ \
t0 = (v0 << 12) + (1 << (out_shift - 1)); \
t1 = (v4 << 12); \
p0 = p3 = t0 + t1; \
p1 = p2 = t0 - t1; \
\
t0 = (v2 + v6) * c6; \
t1 = t0 + v2 * (c2 - c6); \
p0 += t1; \
p3 -= t1; \
\
t1 = t0 - v6 * (c2 + c6); \
p1 += t1; \
p2 -= t1; \
\
/* Odd part: 9 mults */ \
t1 = (v1 + v3 + v5 + v7) * c3; \
t0 = t1 + (v1 + v5) * (-c3 + c5); \
t1 = t1 + (v3 + v7) * (-c3 - c5); \
\
t2 = (v1 + v7) * (-c3 + c7); \
q0 = t0 + t2 + v1 * (c1 + c3 - c5 - c7); \
q3 = t1 + t2 + v7 * (-c1 + c3 + c5 - c7); \
\
t2 = (v3 + v5) * (-c3 - c1); \
q1 = t1 + t2 + v3 * (c1 + c3 + c5 - c7); \
q2 = t0 + t2 + v5 * (c1 + c3 - c5 + c7); \
} while (0)
#define ok_jpg_idct_1d_16(v0, v1, v2, v3, v4, v5, v6, v7) do { \
static const int c1 = 5765; /* cos( 1*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c2 = 5681; /* cos( 2*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c3 = 5543; /* cos( 3*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c4 = 5352; /* cos( 4*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c5 = 5109; /* cos( 5*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c6 = 4816; /* cos( 6*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c7 = 4478; /* cos( 7*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c9 = 3675; /* cos( 9*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c10 = 3218; /* cos(10*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c11 = 2731; /* cos(11*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c12 = 2217; /* cos(12*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c13 = 1682; /* cos(13*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c14 = 1130; /* cos(14*pi/32) * sqrt(2) * (1 << 12) */ \
static const int c15 = 568; /* cos(15*pi/32) * sqrt(2) * (1 << 12) */ \
\
/* Even part: 8 mults */ \
t0 = (v0 << 12) + (1 << (out_shift - 1)); \
t1 = v4 * c4; \
p0 = p7 = t0 + t1; \
p3 = p4 = t0 - t1; \
\
t1 = v4 * c12; \
p1 = p6 = t0 + t1; \
p2 = p5 = t0 - t1; \
\
t0 = (v2 + v6) * c6; \
t1 = t0 + v2 * (c2 - c6); \
p0 += t1; \
p7 -= t1; \
\
t1 = t0 + v6 * (-c6 - c14); \
p1 += t1; \
p6 -= t1; \
\
t0 = (v2 - v6) * c10; \
t1 = t0 + v6 * (c10 - c2); \
p2 += t1; \
p5 -= t1; \
\
t1 = t0 + v2 * (c14 - c10); \
p3 += t1; \
p4 -= t1; \
\
/* Odd part: 21 mults */ \
t1 = (v1 + v3 + v5 - v7) * c9; \
t0 = t1 + (v1 + v5) * (c15 - c9); \
t1 = t1 + (-v3 + v7) * (c1 + c9); \
\
t2 = (v1 - v7) * (c11 - c9); \
q1 = t0 + t2 + v1 * (c3 + c9 - c11 - c15); \
q5 = t1 + t2 + v7 * (-c1 - c9 + c11 + c13); \
\
t2 = (-v3 - v5) * (c13 + c9); \
q4 = t1 + t2 + v3 * (c1 - c5 + c9 + c13); \
q7 = t0 + t2 + v5 * (c9 + c11 + c13 - c15); \
\
t0 = (v1 - v3 - v5 + v7) * c7; \
t1 = (v3 - v7) * (c3 + c7); \
t2 = (v5 - v7) * (c5 + c7); \
q0 = t0 + t1 + t2 + v1 * (c1 - c7) + v7 * (c5 + c7 + c3 + c7); \
q2 = t0 + t1 + v1 * (c5 - c7) + v3 * (c15 - c3); \
q3 = t0 + v3 * (-c11 + c7) + v5 * (-c3 + c7) + v7 * (c15 - c7); \
q6 = t0 + t2 + v1 * (c13 - c7) + v5 * (c1 - c5); \
} while (0)
// Output is scaled by (1 << 12) * sqrt(2) / (1 << out_shift)
static inline void ok_jpg_idct_1d_col_8(const int16_t *in, int *out) {
static const int out_shift = 8;
int t0, t1, t2;
int p0, p1, p2, p3;
int q0, q1, q2, q3;
for (int x = 0; x < 8; x++) {
// Quick check to avoid mults
if (in[1] == 0 && in[2] == 0 && in[3] == 0 && in[4] == 0 &&
in[5] == 0 && in[6] == 0 && in[7] == 0) {
t0 = (in[0]) << (12 - out_shift);
out[0 * 8] = t0;
out[1 * 8] = t0;
out[2 * 8] = t0;
out[3 * 8] = t0;
out[4 * 8] = t0;
out[5 * 8] = t0;
out[6 * 8] = t0;
out[7 * 8] = t0;
} else {
ok_jpg_idct_1d_8(in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7]);
out[0 * 8] = (p0 + q0) >> out_shift;
out[1 * 8] = (p1 + q1) >> out_shift;
out[2 * 8] = (p2 + q2) >> out_shift;
out[3 * 8] = (p3 + q3) >> out_shift;
out[4 * 8] = (p3 - q3) >> out_shift;
out[5 * 8] = (p2 - q2) >> out_shift;
out[6 * 8] = (p1 - q1) >> out_shift;
out[7 * 8] = (p0 - q0) >> out_shift;
}
in += 8;
out++;
}
}
// Output is scaled by (1 << 12) * sqrt(2) / (1 << out_shift)
static inline void ok_jpg_idct_1d_col_16(const int16_t *in, int *out) {
static const int out_shift = 8;
int t0, t1, t2;
int p0, p1, p2, p3, p4, p5, p6, p7;
int q0, q1, q2, q3, q4, q5, q6, q7;
for (int x = 0; x < 8; x++) {
// Quick check to avoid mults
if (in[1] == 0 && in[2] == 0 && in[3] == 0 && in[4] == 0 &&
in[5] == 0 && in[6] == 0 && in[7] == 0) {
t0 = in[0] << (12 - out_shift);
out[ 0 * 8] = t0;
out[ 1 * 8] = t0;
out[ 2 * 8] = t0;
out[ 3 * 8] = t0;
out[ 4 * 8] = t0;
out[ 5 * 8] = t0;
out[ 6 * 8] = t0;
out[ 7 * 8] = t0;
out[ 8 * 8] = t0;
out[ 9 * 8] = t0;
out[10 * 8] = t0;
out[11 * 8] = t0;
out[12 * 8] = t0;
out[13 * 8] = t0;
out[14 * 8] = t0;
out[15 * 8] = t0;
} else {
ok_jpg_idct_1d_16(in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7]);
out[ 0 * 8] = (p0 + q0) >> out_shift;
out[ 1 * 8] = (p1 + q1) >> out_shift;
out[ 2 * 8] = (p2 + q2) >> out_shift;
out[ 3 * 8] = (p3 + q3) >> out_shift;
out[ 4 * 8] = (p4 + q4) >> out_shift;
out[ 5 * 8] = (p5 + q5) >> out_shift;
out[ 6 * 8] = (p6 + q6) >> out_shift;
out[ 7 * 8] = (p7 + q7) >> out_shift;
out[ 8 * 8] = (p7 - q7) >> out_shift;
out[ 9 * 8] = (p6 - q6) >> out_shift;
out[10 * 8] = (p5 - q5) >> out_shift;
out[11 * 8] = (p4 - q4) >> out_shift;
out[12 * 8] = (p3 - q3) >> out_shift;
out[13 * 8] = (p2 - q2) >> out_shift;
out[14 * 8] = (p1 - q1) >> out_shift;
out[15 * 8] = (p0 - q0) >> out_shift;
}
in += 8;
out++;
}
}
// Output is scaled by (1 << 12) * sqrt(2) / (1 << out_shift)
static inline void ok_jpg_idct_1d_row_8(int h, const int *in, uint8_t *out) {
static const int out_shift = 19;
int t0, t1, t2;
int p0, p1, p2, p3;
int q0, q1, q2, q3;
for (int y = 0; y < h; y++) {
// Quick check to avoid mults
if (in[1] == 0 && in[2] == 0 && in[3] == 0 && in[4] == 0 &&
in[5] == 0 && in[6] == 0 && in[7] == 0) {
const int offset = 1 << (out_shift - 12 - 1);
t0 = (in[0] + offset) >> (out_shift - 12);
memset(out, ok_jpg_clip_uint8(t0 + 128), 8);
} else {
ok_jpg_idct_1d_8(in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7]);
out[0] = ok_jpg_clip_uint8(((p0 + q0) >> out_shift) + 128);
out[1] = ok_jpg_clip_uint8(((p1 + q1) >> out_shift) + 128);
out[2] = ok_jpg_clip_uint8(((p2 + q2) >> out_shift) + 128);
out[3] = ok_jpg_clip_uint8(((p3 + q3) >> out_shift) + 128);
out[4] = ok_jpg_clip_uint8(((p3 - q3) >> out_shift) + 128);
out[5] = ok_jpg_clip_uint8(((p2 - q2) >> out_shift) + 128);
out[6] = ok_jpg_clip_uint8(((p1 - q1) >> out_shift) + 128);
out[7] = ok_jpg_clip_uint8(((p0 - q0) >> out_shift) + 128);
}
in += 8;
out += C_WIDTH;
}
}
// Output is scaled by (1 << 12) * sqrt(2) / (1 << out_shift)
static inline void ok_jpg_idct_1d_row_16(int h, const int *in, uint8_t *out) {
static const int out_shift = 19;
int t0, t1, t2;
int p0, p1, p2, p3, p4, p5, p6, p7;
int q0, q1, q2, q3, q4, q5, q6, q7;
for (int y = 0; y < h; y++) {
// Quick check to avoid mults
if (in[1] == 0 && in[2] == 0 && in[3] == 0 && in[4] == 0 &&
in[5] == 0 && in[6] == 0 && in[7] == 0) {
const int offset = 1 << (out_shift - 12 - 1);
t0 = (in[0] + offset) >> (out_shift - 12);
memset(out, ok_jpg_clip_uint8(t0 + 128), 16);
} else {
ok_jpg_idct_1d_16(in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7]);
out[0] = ok_jpg_clip_uint8(((p0 + q0) >> out_shift) + 128);
out[1] = ok_jpg_clip_uint8(((p1 + q1) >> out_shift) + 128);
out[2] = ok_jpg_clip_uint8(((p2 + q2) >> out_shift) + 128);
out[3] = ok_jpg_clip_uint8(((p3 + q3) >> out_shift) + 128);
out[4] = ok_jpg_clip_uint8(((p4 + q4) >> out_shift) + 128);
out[5] = ok_jpg_clip_uint8(((p5 + q5) >> out_shift) + 128);
out[6] = ok_jpg_clip_uint8(((p6 + q6) >> out_shift) + 128);
out[7] = ok_jpg_clip_uint8(((p7 + q7) >> out_shift) + 128);
out[8] = ok_jpg_clip_uint8(((p7 - q7) >> out_shift) + 128);
out[9] = ok_jpg_clip_uint8(((p6 - q6) >> out_shift) + 128);
out[10] = ok_jpg_clip_uint8(((p5 - q5) >> out_shift) + 128);
out[11] = ok_jpg_clip_uint8(((p4 - q4) >> out_shift) + 128);
out[12] = ok_jpg_clip_uint8(((p3 - q3) >> out_shift) + 128);
out[13] = ok_jpg_clip_uint8(((p2 - q2) >> out_shift) + 128);
out[14] = ok_jpg_clip_uint8(((p1 - q1) >> out_shift) + 128);
out[15] = ok_jpg_clip_uint8(((p0 - q0) >> out_shift) + 128);
}
in += 8;
out += C_WIDTH;
}
}
// IDCT a 8x8 input block to 8x8 in an output of size (C_WIDTH x C_WIDTH)
static void ok_jpg_idct_8x8(const int16_t *input, uint8_t *output) {
int temp[8 * 8];
ok_jpg_idct_1d_col_8(input, temp);
ok_jpg_idct_1d_row_8(8, temp, output);
}
// IDCT a 8x8 block to 8x16 in an output of size (C_WIDTH x C_WIDTH)
static void ok_jpg_idct_8x16(const int16_t *input, uint8_t *output) {
int temp[8 * 16];
ok_jpg_idct_1d_col_16(input, temp);
ok_jpg_idct_1d_row_8(16, temp, output);
}
// IDCT a 8x8 block to 16x8 in an output of size (C_WIDTH x C_WIDTH)
static void ok_jpg_idct_16x8(const int16_t *input, uint8_t *output) {
int temp[8 * 8];
ok_jpg_idct_1d_col_8(input, temp);
ok_jpg_idct_1d_row_16(8, temp, output);
}
// IDCT a 8x8 block to 16x16 in an output of size (C_WIDTH x C_WIDTH)
static void ok_jpg_idct_16x16(const int16_t *input, uint8_t *output) {
int temp[8 * 16];
ok_jpg_idct_1d_col_16(input, temp);
ok_jpg_idct_1d_row_16(16, temp, output);
}
// MARK: Entropy decoding
#define OK_JPG_BLOCK_EXTRA_SPACE 15
// Transposed from spec
static const int ok_jpg_zig_zag[] = {
0, 8, 1, 2, 9, 16, 24, 17,
10, 3, 4, 11, 18, 25, 32, 40,
33, 26, 19, 12, 5, 6, 13, 20,
27, 34, 41, 48, 56, 49, 42, 35,
28, 21, 14, 7, 15, 22, 29, 36,
43, 50, 57, 58, 51, 44, 37, 30,
23, 31, 38, 45, 52, 59, 60, 53,
46, 39, 47, 54, 61, 62, 55, 63,
// 15 byte overrun for invalid r values
63, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63
};
static inline void ok_jpg_decode_block(ok_jpg_decoder *decoder, ok_jpg_component *c,
int16_t *block) {
memset(block, 0, 8 * 8 * sizeof(*block));
const uint8_t *q_table = decoder->q_table[c->Tq];
// Decode DC coefficients - F.2.2.1
ok_jpg_huffman_table *dc = decoder->dc_huffman_tables + c->Td;
uint8_t t = ok_jpg_huffman_decode(decoder, dc);
if (t > 0) {
int diff = ok_jpg_load_next_bits(decoder, t);
c->pred += ok_jpg_extend(diff, t);
}
block[0] = c->pred * q_table[0];
// Decode AC coefficients - Figures F.13 and F.14
ok_jpg_huffman_table *ac = decoder->ac_huffman_tables + c->Ta;
int k = 1;
while (k <= 63) {
ok_jpg_load_bits(decoder, 16);
int code = ok_jpg_peek_bits(decoder, HUFFMAN_LOOKUP_SIZE_BITS);
uint8_t num_bits = ac->lookup_ac_num_bits[code];
if (num_bits > 0) {
ok_jpg_consume_bits(decoder, num_bits);
uint8_t rs = ac->lookup_val[code];
int s = rs & 0x0f;
if (s > 0) {
int r = rs >> 4;
k += r;
block[ok_jpg_zig_zag[k]] = ac->lookup_ac_val[code] * q_table[k];
k++;
} else {
if (rs == 0) {
break;
}
k += 16;
}
} else {
uint8_t rs = ok_jpg_huffman_decode(decoder, ac);
int s = rs & 0x0f;
if (s > 0) {
int r = rs >> 4;
k += r;
int v = ok_jpg_load_next_bits(decoder, s);
block[ok_jpg_zig_zag[k]] = (int16_t)ok_jpg_extend(v, s) * q_table[k];
k++;
} else {
if (rs == 0) {
break;